Эйнштейн. Теория относительности. Пространство - это вопрос времени.
Шрифт:
Можно сказать, что пол и стена – это двумерные плоскости, обитатели которых могут наблюдать, как стержень укорачивается (в пространстве) и удлиняется (во времени). А мы получили геометрическую интерпретацию сжатия Лоренца и временного расширения. Обитатели наших двумерных поверхностей могли бы обеспокоиться, обнаружив, что длина стержня меняется при движении. Однако они могли бы разработать трехмерную математическую модель и прийти к выводу, что эти изменения иллюзорны. Во время движения стержня меняются исключительно размеры теней, а длина самого стержня в пространстве с большим количеством измерений остается неизменной.
В наших примерах используются как двумерные, так и трехмерные пространства. Между тем пространство Минковского нуждается в
Пространство-время Минковского предполагает некоторую аскетичность, так как тела в нем движутся с постоянной скоростью. С четырехмерной перспективы предметы без ускорения изображаются как точки или как прямые линии. С введением гравитации и ускорения прямые искривляются, они ведут себя подобно двум параллельным линиям, проведенным на поверхности сферы. Прямая линия из двумерного мира, огибая шар, превращается в дугу, а прямые траектории из специальной теории относительности превращаются в геодезические кривые с ускорением в мире общей теории относительности.
На искривленной поверхности мы можем описать окрестность точки с помощью касательной плоскости. Этот же способ поможет нам, хотя и на небольших участках, физически описать траекторию тела с ускорением при помощи свободного падения. Приближение будет более или менее точным в зависимости от кривизны пространства (иными словами, в зависимости от ускорения, воздействующего на тело).
Общая теория относительности захватила пространство Минковского и искривила его. Из-за чего это произошло? Из-за присутствия массы. Чем больше материи (или энергии) присутствует в пространстве, тем сильнее оно искривлено. Как сказал американский физик Джон Уилер, «гравитация – это не чуждая физическая сила, действующая в пространстве, а проявление геометрии пространства там, где находится масса».
Теперь мы можем выразить суть общей теории относительности в двух утверждениях.
– Траектория тела в гравитационном поле в четырехмерном пространстве принимает форму геодезической линии.
– Отношение между присутствием массы и формой четырехмерного пространства определяется следующим уравнением:
С помощью того же Уилера объясним эту формулу более простым языком: «Пространство говорит материи, как двигаться, а материя говорит пространству, как искривиться». В левой части уравнения мы определим g из метрической функции gμv. Как Rμv так и R – это математические конструкции, формирующиеся на основе g. Эти инварианты отражают, насколько отклоняется пространство от пространства Минковского, измеряя кривизну в каждой его точке.
Второй член, тензор энергии-импульса (Tμv, воплощает материю.
Уравнение Эйнштейна объясняет нам, что в определенной части пространства его кривизна пропорциональна числу (константа G) и количеству материи (или энергии), которая в нем содержится. Мы можем представить себе мир с малой плотностью и постоянными скоростями как гладкий лист бумаги, испещренный прямыми линиями, который начинает сморщиваться, когда увеличивается плотность и появляется ускорение, вплоть до излома линий. Это изменение отражает метрика Минковского, константы которой в определенный момент начинают изменяться.
Предположим,
Присутствие массы позволяет нам в точности воссоздать архитектуру четырехмерного пространства, о котором говорится во втором утверждении, а первое утверждение описывает траектории любого тела, движущегося в этом пространстве.
Уравнение Эйнштейна отражает важное геометрическое свойство. Оно включает инварианты и, следовательно, справедливо для любого наблюдателя. Если расстояние и кривизна пространства не зависят от системы координат, то физические феномены также не обусловлены положением наблюдателя в пространстве – так можно обобщить один из постулатов специальной теории относительности: любое физическое явление протекает одинаково во всех инерциальных системах отсчета. Однако мы можем пойти дальше и сказать: физические законы действуют одинаково во всех системах отсчета, движущихся с ускорением.
С легкой руки Германа Минковского «вирус» теории относительности захватил Гёттингенский университет. В близкое окружение ученого входил один из самых влиятельных и плодовитых математиков XX века – Давид Гильберт. Минковский потратил годы, чтобы привить ему любовь к физике, прибегая при этом даже к дружескому шантажу в виде отказа посетить Гильберта в рождественские каникулы: «Учитывая обстоятельства, не знаю, нуждаешься ли ты в моем обществе. Мне кажется, ты посчитаешь, что я заражен физикой до мозга костей. Так что я останусь в карантине, пока Гурвиц и ты не пригласите меня вновь на свои прогулки, чтобы вести беседы о математических абстракциях».
На своей первой лекции по теории относительности, в 1907 году, Минковский так описал разницу между физиками и математиками: «Похоже, что электромагнитная теория света привела к полному перевороту в наших представлениях о пространстве и времени, что должно вызывать особый интеpec у математиков. Математики при этом находятся в привилегированном положении, они всегда могут приспособить новые точки зрения к уже известным концепциям. И если они продолжают спокойно двигаться по старой проторенной дороге, то физики должны заново открывать знакомые понятия, прорубая дорогу через непроходимый лес». Минковский, который тоже «прорубал дорогу сквозь непроходимый лес», был очень удивлен догадливостью своего бывшего ученика: «Ох, этот Эйнштейн, вечно пропускавший занятия! Никогда бы не подумал, что он способен на такое!»