ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ
Шрифт:
Asakawa A. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. / Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, et al // Neuroendocrinology. 2001;74:143–147. [PubMed]
Asakawa, A. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. /Asakawa, A., Inui, A., Kaga, T., Yuzuriha, H., Nagata, T., Ueno, N., Makino, S., Fujimiya, M., Niijima, A., Fujino, M.A., Kasuga, M.//Gastroenterology120 (2) – 2001 – P.337–345.
Aston-Jones, G. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. /G. Aston-Jones, R. J. Smith, G. C. Sartor et al. // Brain Research. – 2010. – Vol.1314. – P.74–90.
Baimel, C. Hypocretinmodulation of drug-induced synaptic plasticity. /C. Baimel, S. L. Borgland // Progress in Brain Research. – 2012. – Vol.198.
Berridge K.C. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? /Berridge K.C., Robinson T.E.// Brain Res. Rev. 1998. V.28. P.309–369.
Berridge, K.C. Parsing reward Trends in. /Berridge, K.C., Robinson, T.E. // Neurosciences 26 (9) -2003 – P.507–513.
Borgland, S. L. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. /S.L. Borgland, S.A. Taha, F. Sarti et al. // J. Neuron. 2006. V.49. P.589–601.
Borgland, S. L. Orexin A/hypocretin selectively promotes motivation for positive reinforcers. /S. L. Borgland, S. G. Chang, M. S. Bowers et al. // The J. Neuroscience. – 2009. – V.29. – P.11215–11225.
Boutrel B. Addiction and arousal: the hypocretin connection. /Boutrel B., de Lecea L. // Physiol. behav. 2008, 93 (4-5): 947-51.
Bowers, C.Y. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. /Bowers, C.Y., Momany, F.A., Reynolds, G.A., Hong, A.//Endocrinology 114 (5) – 1984 – P.1537–1545.
Breese G.R. Stress sensitization of ethanol withdrawal-induced reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor antagonists and a 5-HT1A-receptor agonist /Breese G.R., Knapp D.J., Overstreet D.H. // Neuropsychopharmacology. 2004. V. 29. P.470–482.
Breiter H.C. Functional imaging of neural responses to expectancy and experience of monetary gains and loses /Breiter H.C., Aharon I., Kahneman D., Dale A., Shizgal P.// Neuron. 2001. V.30. P.619–639.
Breiter H.C. Functional magnetic resonance imaging of brain reward circuitry in the human /Breiter H.C., Rosen B.R. // Ann. N.Y., Acad. Sci. 1999. V.877. P.523–547.
Broberger, C. Hypocretin/orexin – and melanin-concentrating hormone-expressing cells from distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. /C. Broberger, L. De Lecea, J. G. Sutcliffe et al. // J. Comp. Neurol. – 1998. – Vol.402. – P.460–474.
Bruijnzeel A.W. Stressinduced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system /Bruijnzeel A.W., Stam R., Compaan J.C., Wiegant V.M. // Brain Res. 2001. V. 908. P.187–196.
Bruijnzeel A.W. The role of corticotrophin-releasing factor-like peptide4s in cannabis, nicotine, and alcohol dependence /Bruijnzeel A.W., Gold M.S. // Brain Res. Rev. 2005. V.49. P.505–528.
Cabral A. /Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents /A. Cabral, O. Suescun, Jeffrey M. Zigman and M. Perello // PLoS One., 2012.
Cador M. Central administration of corticotropin releasing factor induces long-term sensitization to d-amphetamine /Cador M., Cole B.J., Koob G.F. et al. // Brain Res. 1993. V. 606. P.181–186.
Calissendorff, J. Alcohol ingestion does not affect serum levels of peptide YY but decreases both total and octanoylated ghrelin levels in healthy subjects. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S.//Metabolism – Clinical and Experimental55 (12) – 2006 – P.1625–1629.
Calissendorff, J. Inhibitory effect of alcohol on ghrelin secretion in normal man. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S. //European Journal of Endocrinology152 (5) – 2005 – P.743–747.
Carroll, M.E. Food-deprivation increases oral and intravenous drug intake in rats. /Carroll, M.E., France, C.P., Meisch, R.A. //Science 205 (4403) – 1979 – P.319–321.
Cason, A. M. Role of orexin (hypocretin) in reward-seeking and addiction: Implication for obesity. /T. C. Chou, R. J. Smith, P. Tashili-Fahadan et al. // Physiology and Behavior. – 2010. – Vol.100. – P.419–428.
Cassell M.D. The intrinsic organization of the central extended amygdale /Cassell M.D., Freedman L.J., Shi C. // Ann. N.Y. Acad. Sci. 1999. V.877. P.217–241.
Chalmers D.T. Corticotrophin-releasing factor receptors: from molecular biology to drug design /Chalmers D.T., Lovenberg T.W., Grigoriadis D.E. et al. // Trends Pharmacol. Sci. 1996. V. 17. P.166–172.
Chalmers D.T. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression /Chalmers D.T., Lovenberg T.W., De Souza E.B. // J. Neurosci. 1995. V. 15. P.6340–6350.
Chen R. Expression cloning of a human corticotropin-releasing-factor receptor /Chen R., Lewis K.A., Perrin M.H., Vale W.W. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P.8967–8971.
Chevrette J. Both the shell of the nucleus accumbens and the central nucleus of the amygdala support amphetamine self-administration in rats /Chevrette J., Stellar J.R., Hesse G.W., Markou A. // Pharmacol. Biochem. Behav. 2002. V.71. P.501–507.
Chuang J.C. Ghrelin mediates stress-induced food-reward behavior in mice. / Chuang J.C., Perello M., Sakata I., Osborne-Lawrence S., Savitt J.M., et al. // J Clin Invest. 2011;121:2684–2692. [PMC free article] [PubMed]
Cole B.J. Central administration of a CRF antagonist blocks the development of stress-induced behavioral sensitization /Cole B.J., Cador M., Stinus L. et al. // Brain Res. 1990. V. 512. P.343–346.