Фау-2. Сверхоружие Третьего рейха. 1930–1945
Шрифт:
Глава 13
Пенемюнде за работой
Типичный день в Пенемюнде проходил примерно следующим образом.
Доктор Херманн попросил меня встретиться с ним – у него есть кое-что показать мне. Я приказал водителю в 10.30 прибыть за мной к зданию, где размещалась сверхзвуковая аэродинамическая труба. Чтобы начать рабочий день, необходимо было пройти лишь несколько сотен метров от административного корпуса армейской экспериментальной станции, через внутренние ворота, мимо здания тестирования материалов и инструментальной мастерской к длинному низкому строению красного кирпича. Это была витрина нашего учреждения, отвечавшая и художественным и функциональным запросам. Высокий центральный корпус этого комплекса стоял в ухоженном саду среди стройных сосен.
У этого стройного молодого ученого, исключительно толкового, знающего и опытного, были вытянутое лицо со вскинутыми бровями и светло– каштановые волнистые волосы, которые он зачесывал назад, умные глаза и выразительная жестикуляция. Он отвечал за нашу уникальную сверхзвуковую аэродинамическую трубу, и его энергия воодушевляла всех сотрудников. Ему принадлежала ведущая роль в ее конструировании и строительстве. Труба вошла в строй в ноябре 1939 года. И из года в год характерное шипение воздуха, который на огромной скорости проходил сквозь трубу, смешивалось с ревом ракетных двигателей в лесах Пенемюнде.
Месяцами аэродинамическая труба работала в две и даже в три смены, в среднем по пятьсот часов в месяц. Рабочее время длилось с семи утра до двух ночи. Были две секции снятия показаний, которые подменяли друг друга. Воздух всасывался в огромные раструбы, через металлические лопасти в трубе, которые «приглаживали» его поток, проходил фильтры сушки, а затем разгонялся до сверхзвуковой скорости. Двумя совершенно параллельными, без всяких завихрений, потоками, с равным давлением в любой точке, воздух обтекал подвешенную модель ракеты, с которой снимались показания. Это давало нам возможность, задавая определенную скорость воздушного потока, учитывать аэродинамические силы. Достигнутое давление оставалось постоянным в течение всего времени испытаний.
Воздух снаружи через воронку со специальными створками, которые моментально закрывались по окончании испытаний, засасывался в огромную сферическую вакуумную камеру. Предварительно из нее выкачивалось 98 процентов содержавшегося в ней воздуха, чему способствовали три двойных насоса общей мощностью 1000 лошадиных сил. Вакуумная камера имела объем 990 кубических метров, диаметр ее составлял 12 метров, а толщина стенок – 1,7 сантиметра. Аэродинамическая труба была открыта с одного конца и работала с перерывами. Между испытаниями, которые длились примерно по двадцать секунд, возникали паузы от трех до пяти минут, пока восстанавливался вакуум.
Планируя строительство в Пенемюнде, я не хотел ставить тут ни воздушный туннель для академических исследований, ни экспериментальную аэродинамическую трубу. Нам была нужна конструкция, отвечавшая нашим специфическим задачам. И она появилась – в самое короткое время, отвечающая всем необходимым требованиям, в основе которых лежали тщательные и длительные испытания ракет и снарядов различных форм и очертаний, над которыми в то время уже работали конструкторы. Для этих испытаний необходимо было провести некоторые базовые исследования, и я выделил на эти цели 30 процентов времени работы трубы. С самого начала я поставил условие, что данные, поступающие с пультов управления аэродинамической трубой к конструкторам, расчетчикам траекторий и тем, кто конструирует аппаратуру управления, должны быть понятны и тем, кто профессионально не занимается аэродинамикой.
На меня не производили впечатления чрезмерно мудреные трактаты или отчеты, перегруженные цифрами и совершенно непонятные простым смертным. Мы не хотели гореть священным огнем высокой науки. Нам были нужны данные для нашей работы. Нас волновало не столько «почему», сколько «как», что в военное время и было решающим фактором. Теории, которые проистекали из этих отчетов, интересовали нас лишь в малой мере. Нам были нужны лишь четко изложенные и понятно истолкованные факты.
Команда, работавшая на аэродинамической трубе, как и остальные коллективы в Пенемюнде, была подобрана под определенного человека из числа ученых, который и руководил ею. Я рассчитывал, что он будет нести полную ответственность за этот участок. Он должен был управлять им и в административном плане, и, советуясь со своими коллегами, в научном. Так, путем коллективной работы всех, задействованных в данной области, мы достигали нужных результатов – а руководитель правильно влиял на своих сотрудников и направлял их. Начальники отделов, которые просто ставили свои имена под проделанной работой, долго на этом месте не засиживались.
Я прошел вместе с доктором Херманном по звуконепроницаемому коридору, по одну сторону которого размещались насосы, большая вакуумная камера и отдел измерений, а по другую – конструкторский отдел и административный, и очутился в зале основных испытаний. Здесь меня встретили доктор Курцвег, руководивший исследованиями, главный инженер Гесснер, конструктор аэродинамической трубы, балансиров и моделей, и инженер Рамм, отвечавший за всю измерительную технику.
Доктор Херманн хотел познакомить меня с характеристиками стабильности новой модели образца «А-9», то есть «А-4» с крыльями. Она в 4,4 раза превышала скорость звука или, иными словами, достигала скорости 5600 километров в час.
В сопровождении доктора Херманна я миновал первый сектор отдела измерений, пока нас не остановили толстые двойные стеклянные панели, из-за которых открывался вид на дюзы Лаваля и измерительную камеру.
Стеклянные панели с нашей стороны были раздвинуты. Воздушный поток, вылетающий из дюз Лаваля, имел размеры в поперечнике 40 на 40 сантиметров и в этом помещении был сходен с тем, который обтекал тело ракеты в свободном полете. Но только здесь, в этом пространстве, можно было снимать показания, столь важные для нашей работы. Они снимались с подвешенной модели, которая вращалась вокруг оси, проведенной через центр тяжести, – маленькой модели, точной копии «А-4», если не считать, что у нее были два очень тонких, как лезвие, оттянутых назад крыла. Модель покачивалась от малейшего прикосновения. Доктор Херманн закрыл внутреннюю стеклянную панель, которая превратилась в боковую стенку, прикрывавшую дюзы, затем внешнюю, полностью изолировав таким образом измерительную камеру. Сегодня мы намеревались провести измерения колебаний, прикинуть, в какой мере на них влияет форма крыльев и можно ли добиться стабильности полета на столь высокой сверхзвуковой скорости – то есть будет ли конструкция держаться носом по воздушному потоку, сохраняя направление полета, затухнут ли колебания после нескольких циклов, что докажет способность конструкции противостоять силам аэродинамики.
Наша измерительная аппаратура и дюзы Лава– ля были сконструированы в тот первый, суматошный и хлопотливый год после создания аэродинамической трубы. В то время мы конструировали трехкомпонентный балансир, с помощью которого могли получать важные данные по коэффициентам лобового сопротивления, подъема и бокового сноса. К концу 1940 года у нас был набор дюз, которые давали скорости от 1,2 до 4,4 числа Маха. Наша работа значительно облегчалась тем, что смена дюз занимала всего десять – пятнадцать минут.
Поскольку точности трехкомпонентного балансира было недостаточно для полноты данных, мы создали устройство, чтобы получать информацию о колебаниях моделей, обладавших свободой вибрации. Оценка их, полученная с помощью осцилограмм, позволила нам определить центр давления, что имело решающее значение для стабилизации.
Кроме того, мы создали и встроили в модель устройство, определявшее ее крутящий момент и уровень стабильности в полете.
И модели почти законченных ракет, как «А-4» и «А-9», и зенитная ракета с помощью нашей измерительной аппаратуры испытывались на самых разных скоростях и углах атаки. Модели шириной 4–5 сантиметров и длиной 25–40 сантиметров подвешивались на продольной оси, и изменения давления воздуха мгновенно считывались со ста десяти точек на корпусе ракеты, на крыльях и хвостовых стабилизаторах этой маленькой модели. Этот метод измерений постоянно совершенствовался, и теперь модель исследовалась самым тщательным образом, на всех возможных числах Маха и углах атаки. Этой работой две недели были заняты две смены по 35 человек в каждой. Они-то и давали конструкторам основные принципы, которые те и воплощали в чертежах.