Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:

§ 5. Принцип неопределенности

Понятия вероятности оказались очень полезны при описании поведения газа, состоящего из огромного количества молекул. Немыслимо же в самом деле пытаться определить положение и скорость каждой из 1022 молекул! Когда впервые теория вероятности была применена к таким явлениям, то это рассматривалось просто как удобный способ работы в столь сложной обстановке. Однако теперь мы полагаем, что вероятность существенно необходима для описания различных атомных процессов. Согласно квантовой механике, этой математической теории малых частичек, при определении положения частички и ее скорости всегда существует некоторая неопределенность.

В лучшем случае мы можем только сказать, что существует какая–то вероятность того, что частица находится вблизи точки х.

Для описания местоположения частицы можно ввести плотность вероятности p1(x), так что p1(x)?x будет вероятностью того, что частица находится где–то между х и х+?x. Если положение частицы установлено достаточно хорошо, то примерный вид функции P1(x) может иллюстрировать график, приведенный на фиг. 6.10, а.

Фиг. 6.10. Плотности вероятности координаты, (а) и скорости (6) частицы.

Точно такое же положение и со скоростью частицы: она тоже неизвестна нам точно. С некоторой вероятностью p2(v)?v частица может двигаться со скоростью, находящейся в интервале между v и v+?v.

Один из основных результатов квантовой механики состоит в том, что эти две плотности р1(х) и р2(v) не могут быть выбраны независимо в том смысле, что они обе не могут быть сколь угодно узкими. Если мы возьмем «полуширины» кривых p1(x) и p2(v) и обозначим их соответственно [?x] и [?v] (см. фиг. 6.10), то природа требует, чтобы произведение этих двух полуширив было не меньше величины h/m, где m – масса частицы, a h – некоторая фундаментальная физическая постоянная, называемая постоянной Планка. Это соотношение записывается следующим образом:

[?x][?v]>=h/m (6.22)

и называется принципом неопределенности Гейзенберга.

Чтобы это соотношение выполнялось, частица должна себя вести очень курьезно. Вы видите, что правая часть соотношения (6.22) постоянна, а это означает, что если мы попытаемся «приколоть» частицу в каком–то определенном месте, то эта попытка окончится тем, что мы не сможем угадать, куда она летит и с какой скоростью. Точно также если мы попытаемся заставить частицу двигаться очень медленно или с какой–то определенной скоростью, то она будет «расплываться», и мы не сможем точно указать, где она находится.

Принцип неопределенности выражает ту неясность, которая должна существовать при любой попытке описания природы. Наиболее точное и полное описание природы должно быть только вероятностным. Однако некоторым физикам такой способ описания приходится не по душе. Им кажется, что о реальном поведении частицы можно говорить только, когда одновременно заданы импульсы и координаты. В свое время на заре развития квантовой механики эта проблема очень сильно волновала Эйнштейна. Он часто качал головой и говорил: «Но ведь не гадает же господь бог «орел – решка», чтобы решить, куда должен двигаться электрон!» Этот вопрос беспокоил его в течение очень долгого времени, и до конца своих дней он, по–видимому, так и не смог примириться с тем фактом, что вероятностное описание природы – это максимум того, на что мы пока способны. Есть физики, которые интуитивно чувствуют, что наш мир можно описать как–то по–другому, что можно исключить эти неопределенности в поведении частиц. Они продолжают работать над этой проблемой, но до сих пор ни один из них не добился сколько–нибудь существенного результата.

Эта присущая миру неопределенность в определении положения частицы является наиболее важной чертой описания структуры атомов. В атоме водорода, например, который состоит из одного протона, образующего ядро, и электрона, находящегося где–то вне его, неопределенность в местонахождении электрона такая же, как и размеры самого атома! Мы не можем поэтому с уверенностью сказать, где, в какой части атома находится наш электрон, и уж, конечно, не может быть и речи ни о каких «орбитах». С уверенностью можно говорить только о вероятности p(r)?V обнаружить электрон в элементе объема ?V на расстоянии r от протона. Квантовая механика позволяет в этом случае вычислять плотности вероятности p(r), которая для невозмущенного атома водорода равна Ae–r2a2.

Это – колоколообразная функция наподобие изображенной на фиг. 6.8, причем число а представляет собой характерную величину радиуса, после которого функция очень быстро убывает. Несмотря на то что существует вероятность (хотя и небольшая) обнаружить электрон на большем, чем а, расстоянии от ядра, мы называем эту величину «радиусом атома». Она равна приблизительно 10–10 м.

Если вы хотите как–то представить себе атом водорода, то вообразите этакое «облако», плотность которого пропорциональна плотности вероятности. Пример такого облака показан на фиг. 6.11.

Фиг. 6,11, Воображаемый атом водорода.

Плотность («белизна») облачка пропорциональна плотности вероятности обнаружения электрона.

Такая наглядная картинка, пожалуй, наиболее близка к истине, хотя тут же нужно помнить, что это не реальное «электронное облако», а только «облако вероятностей». Где–то внутри него находится электрон, но природа позволяет нам только гадать, где же именно он находится.

В своем стремлении узнать о природе вещей как можно больше современная физика обнаружила, что существуют вещи, познать которые точно ей никогда не удастся. Многому из наших знаний суждено навсегда остаться неопределенным. Нам дано знать только вероятности.

* Максвелл получил выражение pv=Cv2e–av2 , где а – некоторая связанная с температурой постоянная, а С выбирается таким образом, чтобы полная вероятность была равна единице.

* Эти последние 97 экспериментов проводились следующим образом. Ящик, в котором находились 30 монет, энергично встряхивался; затем подсчитывалось число выпадений «орла».

Глава 7 ТЕОРИЯ ТЯГОТЕНИЯ

§ 1. Движение планет

В этой главе речь пойдет об одном из самых далеко идущих обобщений, сделанных когда–либо человеческим разумом. Мы заслуженно восхищаемся умом человека, но неплохо было бы постоять некоторое время в благоговении и перед природой, полностью беспрекословно подчиняющейся такому изящному и такому простому закону – закону тяготения. В чем же заключается этот закон? Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Математическая запись этого утверждения такова:

Поделиться:
Популярные книги

Новый Рал 3

Северный Лис
3. Рал!
Фантастика:
попаданцы
5.88
рейтинг книги
Новый Рал 3

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Беглец. Второй пояс

Игнатов Михаил Павлович
8. Путь
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
5.67
рейтинг книги
Беглец. Второй пояс

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник