Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:

<+S|0T><0T|0S>.

Соответствующая вероятность такова:

а вероятность в опыте (3.13)

Их отношение

зависит только от Т и S' и совсем не зависит от того, какой пу­чок (+S), (0S) или (-S) был

отобран в S. (Абсолютные же количества могут быть большими или меньшими, смотря по тому, сколько прошло через Т.) Мы бы получили, конечно, аналогичный результат, если бы сравнили вероятности того, что атомы перейдут в плюс- или минус-состояние (по отноше­нию к S'), или отношения вероятностей перейти в нуль- или минус-состояние.

Но раз эти отношения зависят только от того, какой пучок может пройти сквозь Т, а не от отбора, выполненного первым фильтром S, то становится ясно, что тот же результат получил­ся бы, если бы последний прибор даже не был фильтром S. Если в качестве третьего прибора (назовем его R) мы используем прибор, повернутый относительно Т на некоторый произволь­ный угол, то все равно увидим, что отношения типа

не зависят от того, какой пучок проник через первый фильтр S.

§ 4. Базисные состояния

Эти результаты иллюстрируют один из основных принципов квантовой механики: любая атомная система может быть раз­делена процессом фильтрования на определенную совокуп­ность того, что мы назовем базисными состояниями, и будущее поведение атомов в любом данном отдельном базисном состоя­нии зависит только от природы базисного состояния — оно не зависит от предыдущей истории. Базисные состояния за­висят, конечно, от примененного фильтра; например, три со­стояния (+Т), (0Т) и (-Т)—это одна совокупность базисных состояний, а три состояния (+S), (0S) и (-S) — другая. Возможностей сколько угодно, и ни одна не хуже другой.

Необходимо быть осторожным, утверждая, что мы рас­сматриваем хорошие фильтры, которые действительно создают «чистые» пучки. Если, скажем, наш прибор Штерна — Герлаха недостаточно хорошо отделяет пучки друг от друга, то Мы не можем произвести полного разделения на базисные состояния. Мы можем проверить, есть ли у нас чистые базисные состояния, посмотрев, смогут ли пучки опять расщепиться еще одним таким же фильтром. Если, например, имеется чистое состояние (+T), то все атомы пройдут через

но ни один из них не пройдет ни через

ни через

Наше утверждение относительно базисных состояний означает, что есть возможность отфильтровать пучок до некоторого чис­того состояния, так что дальнейшее фильтрование идентичным прибором уже станет невозможным.

Следует еще отметить, что все, что мы говорим, до конца верно лишь в идеализированных случаях. В каждом реальном приборе Штерна — Герлаха надо подумать и о дифракции на щелях, которая может вынудить некоторые атомы перейти в состояния, отвечающие другим углам, и о том, нет ли в пучке атомов с другой степенью возбуждения своих внутренних со­стояний и т. д. Мы идеализировали наш случай и говорим только о тех состояниях, которые расщепляются в магнитном поле; при этом мы игнорируем все, что касается местоположения, импульса, внутренних возбуждений и т. п. Вообще же следовало бы рассматривать также базисные состояния, рассортированные и по отношению ко всем перечисленным характеристикам. Но для простоты мы пользуемся только нашей совокупностью трех состояний. Этого вполне достаточно для того,

чтобы точно рассмотреть идеализированный случай, в котором атомы не подвергаются в приборе плохому обращению, не разрываются и, более того, покидая его, оказываются в состоянии покоя.

Заметьте, что мы всегда начинаем наши мысленные экспери­менты с того, что берем фильтр, у которого открыт только один канал, так что начинаем всегда с определенного базисного со­стояния. Мы делаем это потому, что атомы выходят из печи в различных состояниях, случайно определенных тем, что про­изойдет в печи. (Это дает так называемый «неполяризованный» пучок.) Эта случайность предполагает вероятности «классичес­кого» толка (как при бросании монеты), которые отличаются от интересующих нас сейчас квантовомеханических вероятностей. Работа с неполяризованным пучком привела бы нас к добавоч­ным усложнениям, а их лучше избегать, пока мы не поймем поведения поляризованных пучков. Так что пока не пытайтесь размышлять о том, что случится, если первый аппарат пропустит сквозь себя больше одного пучка. (В конце главы мы расскажем вам, как нужно поступать и в таких случаях.)

А теперь вернемся назад и посмотрим, что будет, если мы перейдем от базисного состояния для одного фильтра к базис­ному состоянию для другого фильтра. Начнем опять с

Атомы, выходящие из Т, оказываются в базисном состоянии (О Т) и не помнят, что когда-то они побывали в состоянии (+S). Некоторые говорят, что при фильтровании прибором Т мы «потеряли информацию» о былом состоянии (+S), потому что «возмутили» атомы, когда разделяли их прибором Т на три пучка. Но это неверно. Прошлая информация теряется не при разделении на три пучка, а тогда, когда ставятся перегородки, в чем можно убедиться в следующем ряде опытов.

Начнем с фильтра +S и обозначим количество прошедших сквозь него атомов буквой N. Если мы вслед за этим поставим фильтр О Т, то число атомов, которое выйдет из фильтра, окажется некоторой частью от первоначального их количества, скажем aN. Если мы затем поставим второй фильтр +S, то до конца дойдет лишь часть b атомов. Это можно записать следующим образом:

Если наш третий прибор S' выделяет другое состояние, скажем (0S), то через него пройдет другая часть атомов, скажем . Мы будем иметь

Теперь предположим, что мы повторили оба эти опыта, убрав из Т все перегородки. Тогда мы получим следующий замечательный результат:

В первом случае через S' прошли все атомы, во втором — ни одного! Это один из самых великих законов квантовой механики. То, что природа действует таким образом, вовсе не самоочевид­но; результаты, которые мы привели, отвечают в нашем идеа­лизированном случае квантовомеханическому поведению, на­блюдавшемуся в бесчисленных экспериментах.

§ 5. Ннтерферирующив амплитуды

Как же это может быть, что, когда переходят от (3.15) к (3.17), т. е. когда открывается больше каналов, через фильтры начинает проходить меньше атомов? Это и есть старый, глубо­кий секрет квантовой механики — интерференция амплитуд. С такого рода парадоксом мы впервые встретились в интерферен­ционном опыте, когда электроны проходили через две щели. Помните, мы тогда увидели, что временами кое-где получается меньше электронов, когда обе щели открыты, чем когда открыта одна. Численно это получается вот как. Можно написать ам­плитуду того, что атом пройдет в приборе (3.17) через Т и S' в виде суммы трех амплитуд — по одной для каждого из трех пучков в Т; эта сумма равна нулю:

Поделиться:
Популярные книги

Удиви меня

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Удиви меня

Live-rpg. эволюция-5

Кронос Александр
5. Эволюция. Live-RPG
Фантастика:
боевая фантастика
5.69
рейтинг книги
Live-rpg. эволюция-5

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Наемный корпус

Вайс Александр
5. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
космоопера
5.00
рейтинг книги
Наемный корпус

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Измена. Верну тебя, жена

Дали Мила
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верну тебя, жена