Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор А и затем анализируются фильтром, который отбирает состояние c. Вы не знаете, каково то состояние j, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в которых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой проблемой.
Прежде всего вы должны быть в состоянии сделать разумные предположения о том, каким образом распределены состояния в атомах, которые выходят из печи. Например, если в печи нет чего-либо «особого», то разумно предположить,
Но почему мы пользовались S, а не Т или каким-нибудь другим представлением? Дело в том, что, как это ни странно, ответ не зависит от того, каким было исходное разложение; он один и тот же, если только мы имеем дело с совершенно случайными ориентациями. Таким же образом получается, что
для любого c. (Докажите-ка это сами!)
Заметьте, что неверно говорить, будто входные состояния обладают амплитудой Ц1/3быть в состоянии (+S), Ц1/3 в состоянии (0S)и Ц1/3в состоянии (-S); если бы это было так, были бы допустимы какие-то интерференции. Здесь вы просто не знаете, каково начальное состояние; вы обязаны думать на языке вероятностей, что система сперва находится во всевозможных мыслимых начальных состояниях, и затем взять средневзвешенное по всем возможностям.
* Число базисных состояний n может оказаться (и, вообще говоря, бывает) равным бесконечности.
* И в самом деле, для атомных систем с тремя или более базисными состояниями существуют другие типы фильтров (совершенно непохожие на приборы Штерна —Герлаха), которые можно было бы употребить для выбора других совокупностей базисных состояний (но при том же общем иx числе ).
* Из этого опыта мы на самом деле не можем заключить, что а= 1, а видим только, что |а| 2 =1, следовательно, а может быть e i d , но можно показать, что при выборе d=0 мы ничего существенного здесь не потеряли.
* На языке наших прежних обозначений
* Мы не собираемся вкладывать в слова «базисное состояние» что-либо сверх того, что здесь сказано. Не следует переводить «базис» как «основу» и хоть в каком-то смысле считать их «основными состояниями». Слово «базис» понимается как «система описания», скажем, в таком смысле, как в выражении «число в десятичной системе».
* Произносить надо так: (+S)—«плюс-S»; (0S) — «нуль-S»; (-S)— «минус-S».
Глава 4
СПИН ОДНА ВТОРАЯ
§ 1. Преобразование амплитуд
§ 2. Преобразование к повернутой системе координат
§ 3. Повороты вокруг оси z
§ 4. Повороты на 180° и на 90 вокруг оси у
§ 5. Повороты вокруг оси x
§ б. Произвольные повороты
§ 1. Преобразование амплитуд
В предыдущей главе мы, пользуясь в качестве примера системой со спином 1, набросали общие принципы квантовой механики.
Любое состояние y можно описать через совокупность базисных состояний, задав амплитуды пребывания в каждом из них.
Амплитуда перехода из одного состояния в другое может быть в общем случае записана в виде суммы произведений амплитуд перехода в одно из базисных состояний на амплитуды перехода из этих базисных состояний в конечное положение; в сумму непременно входят члены, относящиеся к каждому базисному состоянию;
Базисные состояния ортогональны друг другу — амплитуда пребывания в одном, если вы находитесь в другом, есть нуль:
Амплитуда перехода из одного состояния в другое комплексно сопряжена амплитуде обратного перехода
Мы немного поговорили о том, что базис для состояний может быть не один и что можно использовать (4.1), чтобы перейти от одного базиса к другому. Пусть, например, мы знаем амплитуды <iS|y> обнаружения состояния y в любом из базисных состояний i базисной системы S, но затем решаем, что лучше описывать состояние в терминах другой совокупности базисных состояний — скажем, состояний j, принадлежащих к базису Т. Мы тогда можем подставить в общую формулу (4.1) jT вместо c и получить