Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
А если вспомнить, что
то эти формулы можно записать проще:
Это и есть наше искомое преобразование для поворота вокруг оси х на любой угол a. Оно лишь чуть посложнее остальных,
§ 6. Произвольные повороты
Теперь уже понятно, как быть с произвольным поворотом. Во-первых, заметьте, что любая относительная ориентация двух систем координат может быть описана тремя углами (фиг. 4.9).
Фиг. 4.9. Ориентацию любой системы координат х', у', г' по отношению к другой системе х, у, z можно определить с помощью углов Эйлера a, b,g.
Если
Итак, начав просто с некоторых предположений о свойствах пространства, мы вывели преобразование амплитуды при любом повороте. Это означает, что если нам известны амплитуды того, что любое состояние частицы со спином 1/2 перейдет в один из двух пучков прибора Штерна — Герлаха S с осями х, у, z, то мы можем подсчитать, какая часть перейдет в каждый пучок в приборе Т с осями х', у' и z'. Иначе говоря, если имеется состояние yчастицы со спином 1/2, у которого амплитуды пребывания вверху и внизу по отношению к оси z системы координат х, у, z равны С+=<+|y> и С– =<-|y>, то тем самым мы знаем амплитуды С+и C– пребывания вверху и внизу по отношению к оси z' любой другой системы х', у", z' , Четверка коэффициентов в (4.35) — это члены «матрицы преобразования», с помощью которой можно проецировать амплитуды частицы со спином 1/2 в другие системы координат.
Теперь решим несколько примеров, чтобы посмотреть, как все это работает. Возьмем следующий простой вопрос. Пустим атом со спином 1/2 через прибор Штерна — Герлаха, пропускающий только состояние (+z). Какова амплитуда того, что атом окажется в состоянии (+x)? Ось +х — это все равно, что ось +z' системы, повернутой на 90° вокруг оси у. Поэтому в этой задаче проще воспользоваться выражением (4.32), хотя, конечно, можно применить и полное уравнение (4.35). Поскольку С+=1 и С– =0, то получится С'+=1/Ц2. Вероятности -это квадраты модулей этих амплитуд; таким образом, 50% шансов за то, что частица пройдет сквозь прибор, отбирающий состояние (+х). Если бы мы поинтересовались состоянием (-х), то амплитуда оказалась бы -1/Ц2, что опять дало бы вероятность 1/2, чего и следовало ожидать из симметрии пространства. Итак, если частица находится в состоянии (+z), то ей в равной степени вероятно побывать в состояниях (+x) и (-х). Но фазы противоположны.
Ось у тоже без претензий. Частица в состоянии (+z) имеет равные шансы быть в состоянии (+у) или (-у). Но теперь (согласно формуле для поворота на -90° вокруг оси х) амплитуды суть l/Ц2 и -i/Ц2. В этом случае разница в фазах двух амплитуд уже не 180°, как было для (+х)и (-х), а 90°. В этом-то и проявляется различие между х и у.
Вот еще пример. Пусть нам известно, что частица со спином 1/2 находится в состоянии y, поляризованном вверх относительно оси А, определяемой углами q и j (фиг. 4.10).
Фиг. 4.10. Ось А, определяемая полярными углами qи j.
Мы хотим знать амплитуду <C+|y> того, что частица относительно оси z окажется в состоянии «вверх», и амплитуду <C– |y> того, что она окажется в состоянии «вниз» относительно той же оси z. Эти амплитуды мы можем найти, вообразив, что А есть ось z' системы, у которой ось х' направлена произвольно, скажем лежит в плоскости, образованной А и z. Тогда можно перевести систему А в систему х, у, z тремя поворотами. Во-первых, надо сделать поворот на -p/2 вокруг оси A, что переведет ось x в линию В на рисунке. Затем повернуть на — 0 вокруг линии В (вокруг новой оси х системы А), чтобы ось А попала на ось z. И, наконец, повернуть вокруг оси z на угол (p/2-j).
Вспоминая, что вначале было только одно состояние (+) по отношению к А, получаем
Мы хотели бы напоследок подытожить результаты этой главы в форме, которая окажется полезной для нашей дальнейшей работы. Во-первых, напомним, что наш основной результат (4.35) может быть записан в других обозначениях. Заметьте, что (4.35)— это то же самое, что и (4.4) Иначе говоря, в (4.35) коэффициенты при С+=<+S|y> и C'– = <-S|y> суть как раз амплитуды <jT|iS>в (4.4), амплитуды того, что частица в состоянии i по отношению к S окажется в состоянии j по отношению к Т (когда ориентация Т по отношению к S дается углами a, b и g). Мы их также называли RTSjiв выражении (4.6). (Чего-чего, а обозначений у нас хватало!) Например,
Было бы удобно иметь эти амплитуды расписанными для некоторых особо важных случаев. Пусть Rz(j) — поворот на угол j вокруг оси z. Так же можно обозначить и соответствующую матрицу поворота (опуская молчаливо подразумеваемые индексы i и j). В том же смысле Rx(j) и Ry(j) будут обозначать повороты на угол j вокруг оси х и оси у,
В табл. 4.2 мы приводим матрицы — таблицы амплитуд <jT|iS>, которые проецируют амплитуды из системы S в систему Т, где Т получается из S указанным поворотом.
* Нетрудно показать, что систему х, у, z можно перевести в систему х', у', z' следующими тремя поворотами вокруг первоначальных осей: 1) повернуть на угол g вокруг первоначальной оси z; 2) повернуть на угол а вокруг первоначальной оси х; 3) повернуть на угол b вокруг первоначальной оси z.
* Второе решение меняет все знаки у а, b, с, d и отвечает повороту на -270°.
* Заметим, что если последовательность малых поворотов приведет в конце концов к первоначальной ориентации предмета, то всегда есть возможность, проследив всю историю, отличить поворот на 360° от поворота на 0° (но интересно, что для поворота на 720° это неверно).
* Конечно, подошло бы и m=- 1 / 2 . Однако из (4.17) ясно, что изменение знака просто переопределит понятие «спин вверх».