Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
Допустим затем, что имеется экспериментальное устройство (фиг. 5.9): поляризованные мюоны входят слева и в блоке вещества А останавливаются, а чуть позже распадаются.
Фиг.. 5.9.Опыт с распадом мюона.
Испускаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут входить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение
Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по +х; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином 1/2 в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины направлены вверх или вниз по полю,— тогда их амплитуды умножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором базисные состояния — это направления спином вверх или спином вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.
Пусть |y(t)> представляет состояние мюона. Когда он входит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+x). Из предыдущей главы следует, что эти амплитуды равны
Они оказываются одинаковыми. Раз они относятся к положению при t=0, обозначим их С+(0) и С– (0).
Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует
Но если нам известны C+(t) и C– (t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в момент t)окажется направленным по +х. Но наши общие правила учитывают и эту задачу. Мы пишем, что амплитуда пребывания в состоянии (+x) в момент t [обозначим ее A+(t)]есть
или
Опять пользуясь результатом последней главы (или лучше равенством
Итак, в (5.37) все известно. Мы получаем
или
Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t=0. Мы
Вероятность Р+того, что мюон окажется в состоянии (+х) в момент t, есть (А+)2, т. е.
Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.
Фиг. 5.10. Временная зависимость вepoятности того. что частица со спином 1 / 2 окажется в состоянии (+) по отношению оси х.
Заметьте, что вероятность возвращается к единице при mBt/h=p (а не при 2p). Из-за того что косинус возведен в квадрат, вероятность повторяется с частотой 2mВ/h.
Итак, мы обнаружили, что шанс поймать в электронном счетчике, показанном на фиг. 5.9, распадный электрон периодически меняется с величиной интервала времени, в течение которого мюон сидел в магнитном поле. Частота зависит от магнитного момента (Л. Именно таким образом и был на самом деле измерен магнитный момент мюона.
Тем же методом, конечно, можно воспользоваться, чтобы ответить на другие вопросы, касающиеся распада мюона. Например, как зависит от времени t шанс заметить распадный электрон в направлении у, под 90° к направлению х, но по-прежнему под прямым углом к полю? Если вы решите эту задачу, то увидите, что вероятность оказаться в состоянии (+у) меняется как cos2{(mBt/h)-(p/4)}; она колеблется с тем же периодом, но достигает максимума на четверть цикла позже, когда mВt/h=p/4. На самом-то деле происходит вот что: с течением времени мюон проходит через последовательность состояний, отвечающих полной поляризации в направлении, которое непрерывно вращается вокруг оси z. Это можно описать, говоря, что спин прецессирует с частотой
Вам должно становиться понятно, в какую форму выливается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.
* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.
* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значительной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.
Глава 6
ГАМИЛЬТОНОВА МАТРИЦА
§ 1. Амплитуды и векторы
§ 2. Разложение векторов состояний
§ 3. Каковы базисные состояния мира?
§ 4. Как состояния меняются во времени