Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
§ 2. Разложение векторов состояний
Посмотрим на уравнение (6.8) еще раз; его можно рассматривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокупности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффициенты <i|j> — это просто обычные (комплексные) числа, напишем
<i|j>=Сi. Тогда (6.8) совпадает с
Такое
где Di — это просто амплитуды <i|c>.
Представим, что мы начали бы с того, что в (6.1) абстрагировались бы от j. Тогда мы бы имели
Вспоминая, что <c|i>=<i|c>*, можно записать это в виде
А теперь интересно вот что: чтобы обратно получить <c|j>, можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):
Это ничего не меняет. Объединяя с (6.10), получаем
Вспомните, однако, что <j|i>=dij, так что в сумме останутся только члены с j=i. Выйдет
где, как вы помните, d*i=<i|c>*=<c|i>, а Ci=<i|j>. Опять мы являемся свидетелями тесной аналогии со скалярным произведением
Единственная разница — что Diнужно комплексно сопрягать. Значит, (6.15) утверждает, что если разложить векторы состояний <c| и |j> по базисным векторам <i| или |i), то амплитуда перехода из j в c дается своего рода скалярным произведением (6.15). А это просто (6.1), записанное в других символах. Мы ходим по кругу, привыкая к новым символам.
Может быть, стоит подчеркнуть, что в то время, как пространственные трехмерные векторы выражаются через три ортогональных единичных вектора, базисные векторы |i> квантовомеханических состояний должны пробегать всю совокупность, отвечающую данной задаче. В зависимости от положения вещей в нее может входить два или три, пять или бесконечно много базисных состояний.
Мы говорили также о том, что происходит, когда частицы проходят через прибор. Если мы выпустим частицы в определенном состоянии j, затем проведем их через прибор, а после проделаем измерение, чтобы посмотреть, находятся ли они в состоянии c, то результат будет описываться амплитудой
Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так:
Это пример двукратного применения основного правила (6.9).
Мы обнаружили также, что если вслед за прибором А по ставить другой прибор 5, то можно написать
Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6,9). Вспомните, что между В и A всегда можно поставить черту (|), которая ведет себя совсем как множитель единица.
Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор А в состоянии j и выходящей из него в состоянии y. Мы можем задать себе такой вопрос: можно ли найти такое состояние y, чтобы амплитуда перехода от yк c тождественно совпадала с амплитудой <c|A|j>?Ответ гласит да. Мы хотим, чтобы (6.17) заменилось уравнением
Конечно, этого можно достичь, если взять
что и определяет собой y. «Но оно не определяет собой y,— скажете вы,— оно определяет только <i|y>». Однако <i|y> все же определяет y; ведь если у вас есть все коэффициенты, связывающие y с базисными состояниями i, то y определяется однозначно. И действительно, можно поупражняться с нашими обозначениями и записать (6.20) в виде
А раз это уравнение справедливо при всех г, то можно просто писать
Теперь мы вправе сказать: «Состояние y — это то, что получается, если начать с j и пройти сквозь аппарат A».
Еще один, последний пример полезных уловок. Начинаем опять с (6.17). Раз это уравнение соблюдается при любых c и j, то их обоих можно сократить! Получаем
Что это значит? Только то, что получится, если вернуть на свои места j и c. В таком виде это уравнение «недокончено» и неполно. Если умножить его «справа» на |j>, то оно превращается в