Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
Вы помните, что Сi(t) — это амплитуда <i|y> обнаружить состояние y в одном из базисных состояний i (в момент t). Значит, уравнение (6.39) сообщает нам, как каждый из коэффициентов <i|y> меняется со временем. Но это все равно, что сказать, что (6.39) сообщает нам, как со временем меняется состояние y, раз мы описываем y через амплитуды < i|y>. Изменение y со временем описывается через матрицу Нij, которая, конечно, должна включать все то, что мы делали с системой, чтобы вызвать ее изменения. Если мы знаем матрицу Hij, которая
(Нужно сказать, что мы всегда будем выбирать совокупность базисных состояний, которые фиксированы и со временем не меняются. Иногда используют такие базисные состояния, которые сами меняются. Однако это все равно, что пользоваться в механике вращающейся системой координат, а мы не хотим входить в подобные тонкости.)
§ 5. Гамилътонова матрица
Идея, стало быть, заключается в том, что для квантовомеханического описания мира нужно выбрать совокупность базисных состояний i и написать физические законы, задавая матрицу коэффициентов Нij. Тогда у нас будет все, что нужно,— мы сможем отвечать на любой вопрос о том, что случится. Нам остается выучить правила, по которым находят Н в соответствии с данной физической обстановкой: какое Н отвечает магнитному полю, какое электрическому и т. д. Это самая трудная часть дела. К примеру, для новых странных частиц мы совершенно не представляем, какие Нijупотреблять. Иными словами, никто не знает полного Hijдля всего мира. (Частично трудность заключается в том, что едва ли можно надеяться на открытие Нij, раз никому не известно, каковы базисные состояния!) Мы действительно владеем превосходными приближениями для нерелятивистских явлений и некоторых других особых случаев. В частности, мы знаем вид Нij, требуемый для движений электронов в атомах — для описания химии. Но мы не знаем полного, истинного Н для всей Вселенной.
Коэффициенты Hijназывают гамильтоновой матрицей, или, короче, просто гамильтонианом. (Как получилось, что Гамильтон, работавший в 30-х годах прошлого века, дал свое имя квантовомеханической матрице,— история длинная.) Много лучше было бы называть ее энергетической матрицей по при чинам, которые станут ясны, когда мы поработаем с ней. Итак все сошлось на гамильтониане. Как узнать гамильтониан — вот в чем вопрос!
У гамильтониана есть одно свойство, которое выводится сразу же:
Н*ij=Hji. (6.40)
Это следует из того, что полная вероятность пребывания системы хоть в каком-то состоянии не должна меняться. Если вначале у вас была частица (или любой объект, или весь мир), то с течением, времени она пропасть не может. Полная вероятность ее где-то найти равна
что не должно меняться со временем. Если это обязано выполняться для любого начального условия j, то уравнение (6.40) тоже должно соблюдаться.
В качестве первого примера возьмем случай, когда физические условия не меняются со временем; мы имеем в виду внешние физические условия, так что Н не зависит от времени никаких магнитов никто не включает и не выключает. Выберем также систему, для описания которой хватает одного базисного состояния; такое приближение годится для покоящегося атома водорода и сходных систем. Уравнение (6.39) тогда утверждает, что
Только одно уравнение — и все! Если Н11постоянно, это дифференциальное уравнение легко решается, давая
Так зависит от времени состояние с определенной энергией Е=Н11. Вы видите, почему Нijследовало бы называть энергетической матрицей: она обобщает понятие энергии на более сложные случаи.
Вслед за этим, чтобы еще лучше разобраться в смысле уравнений, рассмотрим систему с двумя базисными состояниями.
Тогда (6.39) читается так:
Если все Н опять не зависят от времени, то эти уравнения легко решить. Для интереса займитесь этим сами, а мы позже еще вернемся к ним. Вот вы уже и можете вести расчеты по квантовой механике, зная об Н только то, что оно не зависит от времени!
§ 6. Молекула аммиака
Теперь мы хотим продемонстрировать, как динамическое уравнение квантовой механики может быть использовано для описания какой-то физической обстановки. Мы выбрали интересный и простой пример, в котором, сделав некоторые разумные предположения о гамильтониане, сможем вывести кое-какие важные (и даже практически важные) результаты. Возьмем случай, когда достаточно двух состояний,— это молекула аммиака.
Молекулу аммиака образуют один атом азота и три атома водорода, плоскость которых проходит мимо атома азота, так что молекула имеет форму пирамидки (фиг. 6.1, а).
Фиг. 6.I. Два равноценных геометрических расположения молекулы аммиака.
Эта молекула, как и всякая другая, обладает бесконечным количеством состояний. Она может вращаться вокруг какой угодно оси; двигаться в любом направлении, вибрировать и т. д. и т. п. Значит, это вовсе не система с двумя состояниями. Но мы сделаем следующее приближение: предположим, что все прочие степени свободы закреплены и не связаны с теми, которые нас сейчас интересуют. Будем считать, что молекула может только вращаться вокруг оси симметрии (как показано на рисунке), что импульс ее переносного движения равен нулю и что ее колебания очень слабы. Это фиксирует все условия, кроме одного: для, атома азота все еще существуют два возможных положения — он может оказаться по одну сторону плоскости атомов водорода, а может оказаться и по другую (фиг. 6.1). Так что мы будем рассуждать о молекуле, как если бы она была системой с двумя состояниями. Под этим подразумевается, что существуют только два состояния, о которых реально следует заботиться, все же прочее предполагается зафиксированным. Как видите, если даже известно, что молекула вращается вокруг оси с определенным моментом количества движения и что она движется с определенным импульсом и колеблется определенным образом, то все равно еще остаются два Допустимых состояния. Будем говорить, что молекула находится в состоянии |1>, когда азот «вверху» (фиг. 6.1, а) и в состоянии |2>, когда азот «внизу» (фиг. 6.1, б). Состояния |1> и |2> в нашем анализе поведения молекулы аммиака можно принять за совокупность базисных состояний В каждый момент истинное состояние |y> молекулы может быть представлено заданием C1=<1|y> — амплитуды пребывания в состоянии \1 и С2=<2|y> — амплитуды пребывания в состоянии |2>. Тогда, используя (6.8), вектор состояния |y> можно записать так:
Но вот что интересно: если известно, что молекула в определенный момент была в определенном состоянии, то в следующий момент она может уже не быть в том же состоянии. Два С– коэффициента меняются со временем в соответствии с уравнениями (6.43), которые верны для любой системы с двумя состояниями. Предположим, к примеру, что вы сделали какое-то наблюдение (или как-то отобрали молекулы), так что знаете, что первоначально молекула находилась в состоянии |1>. Чуть позже уже появляются некоторые шансы засечь ее в состоянии |2>. Чтобы узнать, сколь велики эти шансы, нужно решить дифференциальное уравнение, которое говорит, как амплитуды меняются со временем.