Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
Фиг.1.6. Скорость счета нейтронов как функция угла, а — для ядер со спином 0; б — вероятность рассеяния с переворотом спина; в — наблюдаемая скорость счета для ядра со спином 1/2.
Однако в некоторых сортах кристаллов этого не случается, в них наряду с упомянутыми выше дифракционными пиками имеется общий фон от рассеяния во всех направлениях. Мы должны попытаться понять столь таинственную с виду причину этого. Дело в том, что мы не учли одного важного свойства нейтрона. Его спин равен 1/2. и тем самым он может находиться в двух состояниях: либо его спин
Если спин нейтрона куда-то направлен и спин атомного ядра направлен туда же, то в процессе рассеяния направление спина не меняется. Если же спины нейтрона и атомного ядра направлены в противоположные стороны, то рассеяние может происходить посредством двух процессов, в одном из которых направления не меняются, а в другом происходит обмен направлениями. Это правило о том, что сумма спинов не должна меняться, аналогично нашему классическому закону сохранения момента количества движения. И мы уже в состоянии будем понять интересующее нас явление, если предположим, что все ядра, на которых происходит рассеяние, имеют одно и то же направление спина. Нейтрон с тем же направлением спина тогда рассеется так, что получится ожидавшееся узкое интерференционное распределение. А что будет с нейтроном с противоположным направлением спина? Если он рассеивается без переворота направления спина, то ничего по сравнению со сказанным не меняется; но если при рассеянии оба спина переворачиваются, то, вообще говоря, можно указать, на каком из ядер произошло рассеяние, потому что именно у этого ядра спин перевернулся. Но если мы в состоянии указать, на каком атоме случилось рассеяние, то причем здесь остальные атомы? Ни при чем, конечно. Рассеяние здесь такое же, как от отдельного атома.
Чтобы учесть этот эффект, надо видоизменить математическую формулировку уравнения (1.12), потому что в том анализе состояния не были охарактеризованы полностью. Пусть вначале у всех нейтронов, вылетающих из источника, спин направлен вверх, а у всех ядер кристалла — вниз. Во-первых, нам нужна амплитуда того, что в счетчике нейтронов их спин окажется направленным вверх и все спины в кристалле будут по-прежнему смотреть вниз. Это ничем не отличается от наших прежних рассуждений. Обозначим через а амплитуду рассеяния без переворота спина. Амплитуда рассеяния от i– го атома, разумеется, равна
Поскольку все спины атомов направлены вниз, разные альтернативы (разные значения i) нельзя друг от друга отличить. В этом процессе все амплитуды интерферируют.
Но есть и другой случай, когда спин детектируемого нейтрона смотрит вниз, хотя вначале, в S, он смотрел вверх. Тогда в кристалле один из спинов должен перевернуться вверх, скажем спин k-го атома. Допустим, что у всех атомов амплитуда рассеяния с переворотом спина одна и та же и равна 6. (В реальном кристалле имеется еще одна неприятная возможность: перевернутый спин переходит к какому-то другому атому, но допустим, что в нашем кристалле вероятность этого мала.) Тогда амплитуда рассеяния равна
Если мы спросим теперь, какова вероятность того, что у нейтрона спин окажется направленным вниз, а у k-го ядра — вверх, то она будет равняться квадрату модуля этой амплитуды, т. е. просто |b|2, умноженному на |<С|k><k|S>|2. Второй множитель почти не зависит от того, где атом k расположен в кристалле, и все фазы при вычислении квадрата модуля исчезают. Вероятность рассеяния на любом ядре кристалла с переворотом спина, стало быть, равна
что дает гладкое распределение, как на фиг. 1.6, б.
Вы можете возразить: «А мне все равно, какой атом перевернулся». Пусть так, но природа-то это знает, и вероятность на самом деле выходит такой, как написано выше,— никакой интерференции не остается. А вот если вас заинтересует вероятность того, что спин в детекторе будет направлен вверх, а спины всех атомов — по-прежнему вниз, то вы должны будете взять квадрат модуля суммы:
Поскольку у каждого слагаемого в этой сумме есть своя фаза, то они интерферируют и появляется резкая интерференционная картина. И если мы проводим эксперимент, в котором мы не наблюдаем спина детектируемого нейтрона, то могут произойти события обоих типов и сложатся отдельные вероятности. Полная вероятность (или скорость счета) как функция угла тогда выглядит подобно кривой на фиг. 1.6, в.
Давайте еще раз окинем взглядом физику этого опыта. Если вы способны в принципе различить взаимоисключающие конечные состояния (хотя вы и не собирались на самом деле этого делать), то полная конечная вероятность получается подсчетом вероятности каждого состояния (а не амплитуды) и последующим их сложением. А если вы неспособны даже в принципе различить конечные состояния, тогда надо сперва сложить амплитуды вероятностей, а уж потом вычислять квадрат модуля и находить самую вероятность. Заметьте особенно, что если бы вы попытались представить нейтрон в виде отдельной волны, то получили бы одно и то же распределение и для рассеяния нейтронов, вращающихся спином вниз, и для нейтронов, вращающихся спином вверх. Вы должны были бы сказать, что «волна» нейтронов со спином, направленным вниз, пришла ото всех различных атомов и интерферирует так же, как это делает одинаковая по длине волна нейтронов со спином, направленным вверх. Но мы знаем, что на самом деле это не так. Так что (мы уже это отмечали) нужно быть осторожным и не представлять себе чересчур реально волны в пространстве. Они полезны для некоторых задач. Но не для всех.
§ 4. Тождественные частицы
Очередной опыт, который мы хотим описать, продемонстрирует одно из замечательных следствий квантовой механики. В нем снова встретятся такие физические события, в которых существуют два неразличимых пути и, как всегда при таких обстоятельствах, возникает интерференция амплитуд. Мы собираемся рассмотреть рассеяние одних ядер на других при сравнительно низкой энергии. Начнем, скажем, с a-частиц (это, как вы знаете, просто ядра гелия), бомбардирующих кислород. Чтобы облегчить анализ реакции, проведем его в системе центра масс, в которой скорости ядра кислорода и a-частицы перед столкновением противоположны, а после столкновения тоже противоположны (фиг. 1.7, а). (Величины скоростей, конечно, различны, поскольку массы различны.) Предположим также, что энергия сохраняется и что энергия столкновения настолько мала, что частицы ни раскалываются, ни переходят в возбужденное состояние. Причина, отчего частицы отклоняют друг друга, состоит попросту в том, что обе они заряжены положительно и, выражаясь классически, отталкиваются, проходя одна мимо другой. Рассеяние на разные углы будет происходить с различной вероятностью, и мы хотим выяснить угловую зависимость подобного рассеяния. (Конечно, все это можно рассчитать классически, и по удивительной случайности оказалось, что ответ на этот вопрос в квантовой механике и в классической — один и тот же. Это очень занятно, потому что ни при каком законе сил, кроме закона обратных квадратов, так не бывает, стало быть, это и впрямь случайность.)
Вероятность рассеяния в разных направлениях можно измерить в опыте, изображенном на фиг. 1.7,а.
Фиг. 1.7. Рассеяние a-частиц на ядрах кислорода, наблюдаемое в системе центра масс.
Счетчик в положении D1может быть сконструирован так, чтобы детектировать только a-частицы; счетчик в положении D2 может быть устроен так, чтобы детектировать кислород просто для проверки. (В системе центра масс детекторы должны смотреть друг на друга, в лабораторной — нет.) Опыт заключается в измерении вероятности рассеяния в разных направлениях. Обозначим через f(q) амплитуду рассеяния в счетчики, когда они расположены под углом q; тогда | f(q)|2 — наша экспериментально определяемая вероятность.
Можно было бы провести и другой опыт, в котором наши счетчики реагировали бы ина a-частицу, ина ядро кислорода. Тогда нужно сообразить, что будет, если мы решим не заботиться о том, какая из частиц попала в счетчик. Разумеется, когда кислород летит в направлении q, то с противоположной стороны, под углом (p-q), должна оказаться a-частица (фиг. 1.7,б). Значит, если f(q) — амплитуда рассеяния кислорода на угол 0, то f(р-q) — это амплитуда рассеяния a-частицы на угол . Таким образом, вероятность того, что какая-то частица окажется в счетчике, который находится в положении d1, равна