Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:

|n!abc ... |2dS1dS2 ... dSn. (2.19)

Когда каждый элемент dS прогоняют по площади DS счет­чика, то всякое мыслимое произведение элементов поверхности считается n!раз; учтем это, разделив на n!, и получим

или

Сравнивая

это с (2.17), видим, что вероятность совместного счета n бозе-частиц в n!раз больше, чем получилось бы в пред­положении, что все частицы различимы. Все это можно подыто­жить так:

Итак, вероятность в случае бозе-частиц в n!раз больше, чем вы получили бы, считая, что частицы действовали независимо. Мы лучше поймем, что это значит, если спросим: чему равна вероятность того, что бозе-частица перейдет в некоторое состоя­ние, в котором уже находятся n других частиц? Обозначим добавленную частицу буквой w. Если всего, включая w, имеется (n+1) частиц, то (2.20) обращается в

Это можно записать так:

или

Этот результат можно истолковать следующим образом. Число |w|2DS — это вероятность заполучить в счетчик части­цу w, если никаких других частиц нет; Рn(бозе) — это шанс того, что там уже есть n других бозе-частиц. Значит, (2.23) говорит нам, что когда у нас уже есть n других идентичных друг другу бозе-частиц, то вероятность того, что еще одна частица придет в то же состояние, усиливается в (n+1) раз. Вероят­ность получить еще один бозон там, где уже есть их n штук, в (n+1) раз больше той, какая была бы, если бы там раньше ни­чего не было. Наличие других частиц увеличивает вероятность заполучить еще одну.

§ 4. Излучение и поглощение фотонов

Повсюду в наших рассуждениях шла речь о процессе, по­хожем на рассеяние a-частиц. Но это необязательно; можно было бы говорить и о создании частиц, например об излучении света. При излучении света «создается» фотон. В этом случае уже не нужны на фиг. 2.4 входящие линии; можно просто счи­тать, что есть n атомов а, b, с, . . . , излучающих свет (фиг. 2.5).

Фиг. 2.5. Образование n фотонов в близких состояниях.

Значит, наш результат можно сформулировать и так: вероятность того, что атом излучит фотон в некотором конечном состоянии, увеличивается в (n+1) раз, если в этом состоянии уже есть n фотонов.

Многим больше нравится высказывать этот результат иначе; они говорят, что амплитуда испускания фотона увеличи­вается в Ц(п+1) раз, если уже имеется в наличии n фотонов. Разумеется, это просто другой способ сказать то же самое, если только иметь в виду, что эту амплитуду для получения вероят­ности надо просто возвести в квадрат.

В квантовой механике справедливо в общем случае утвержде­ние о том, что амплитуда получения состояния cиз любого другого состояния j комплексно сопряжена амплитуде получе­ния j из c

Мы разберемся в этом чуть позже, а пока просто предположим, что на самом деле это так. Тогда этим можно воспользоваться, чтобы понять, как фотоны рассеиваются или поглощаются из данного состояния. Мы знаем, что амплитуда того, что фотон прибавится к какому-то состоянию, скажем к i, вкотором уже находится n фотонов, равна

где а=<i|а> — амплитуда, когда нет других фотонов. Если воспользоваться формулой (2.24), то амплитуда обратного перехода — от (n+1) фотонов к n фотонам — равна

Но обычно говорят иначе; людям не нравится думать о пере­ходе от (n+1) к n, они всегда предпочитают исходить из того, что имелось n фотонов. Поэтому говорят, что амплитуда погло­щения фотона, если имеется n других, иными словами, перехода от n к (n-1), равна

<n-1|n>=Цna*. (2.27)

Это, разумеется, просто та же самая формула (2.26). Но тогда возникает новая забота — помнить, когда пишется Цn и когда Ц(n+1). Запомнить это можно так: множитель всегда равен корню квадратному из наибольшего числа имевшихся в нали­чии фотонов, все равно — до реакции или после. Уравнения (2.25) и (2.26) свидетельствуют о том, что закон на самом деле симметричен; несимметрично он выглядит лишь тогда, когда его записывают в виде (2.27).

Из этих новых правил проистекает множество физических следствий; мы хотим привести одно из них, касающееся испус­кания света. Представим случай, когда фотоны находятся в ящике,— можете вообразить, что ящик имеет зеркальные стен­ки. Пусть в этом ящике в одном и том же состоянии (с одними и теми же частотой, поляризацией и направлением) имеется n фо­тонов, так что их нельзя друг от друга отличить, и пусть в ящике имеется атом, который может испустить еще один фотон в таком же состоянии. Тогда вероятность того, что он испустит фотон, равна

(п+1)|a|2, (2.28)

а вероятность того, что он фотон поглотит, равна

n|а|2, (2.29)

где |а|2вероятность того, что он испустил бы фотон, если бы не было этих n фотонов. Мы уже говорили об этих правилах немного по-иному в гл. 42 (вып. 4). Выражение (2.29) утверждает, что вероятность того, что атом поглотит фотон и совершит переход в состояние с более высокой энергией, пропорциональ­на интенсивности света, освещающего его. Но, как впервые указал Эйнштейн, скорость, с которой атом переходит в более низкое энергетическое состояние, состоит из двух частей. Есть вероятность |а|2 того, что он совершит самопроизвольный переход, и есть вероятность вынужденного перехода n|а|2, пропорциональная интенсивности света, т. е. числу имеющихся фотонов. Далее, как заметил Эйнштейн, коэффициенты погло­щения и вынужденного испускания равны между собой и свя­заны с вероятностью самопроизвольного испускания. Здесь же мы выяснили, что если интенсивность света измеряется ко­личеством имеющихся фотонов (вместо того, чтобы пользоваться энергией в единице объема или в секунду), то коэффициенты поглощения, вынужденного испускания и самопроизвольного испускания все равны друг другу. В этом смысл соотношения между коэффициентами А и В, выведенного Эйнштейном [см. гл. 42 (вып. 4), соотношение (42.18)].

Поделиться:
Популярные книги

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Рухнувший мир

Vector
2. Студент
Фантастика:
фэнтези
5.25
рейтинг книги
Рухнувший мир

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4