Фейнмановские лекции по физике. 8. Квантовая механика I
Шрифт:
Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1|s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик D1. Обозначим эту амплитуду через а. Затем имеется амплитуда <x|1> того, что электрон переходит от щели 1 к электронному счетчику в х. Амплитуда того, что электрон перейдет от s к х через щель 1 ирассеет фотон в счетчик D1тогда равна
<x|l> a <l|s>.
Или в наших прежних обозначениях это просто аj1.
Имеется также некоторая
Амплитуда обнаружения электрона в х и фотона в счетчике D1 есть сумма двух слагаемых, по одному для каждого мыслимого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго — что фотон рассеян таким электроном в счетчик D1;мы имеем
Аналогичное выражение можно получить и для случая, когда фотон будет обнаружен другим счетчиком D2. Если допустить для простоты, что система симметрична, то а будет также амплитудой попадания фотона в счетчик D2, когда электрон проскакивает через щель 2, a b — амплитудой попадания фотона в счетчик D2, когда электрон проходит через щель 1. Соответствующая полная амплитуда — амплитуда того, что фотон окажется в счетчике D2, а электрон в х,— равна
Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой вероятностью будут получаться отсчеты в счетчике D1при попадании электрона в х. Это будет квадрат модуля амплитуды, даваемой формулой (1.8), т. е. попросту |aj1+bj2|2. Поглядим на это выражение внимательнее. Прежде всего, если b=0 (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен |j1|2 с множителем |a|2. Это как раз то распределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а.
Фиг. 1.4. Вероятность отсчета электрона в х при условии, что в D 1 замечен фотон в опыте, показанном на фиг. 1.3. а — при b=0; б — при b=а; в — при 0<b<а.
С другой стороны, если длина волны велика, рассеяние за щелью 2 в счетчик D1 может стать почти таким же, как за щелью 1. Хотя в а и b могут входить какие-то фазы, возьмем самый простой случай, когда обе фазы одинаковы. Если а практически совпадает с b, то полная вероятность обращается в | j1+j2|2, умноженное на |а|2, потому что общий множитель а можно вынести. Но тогда выходит то самое распределение вероятностей, которое получилось бы, если бы фотонов вовсе не было. Следовательно, когда длина волны очень велика (и детектировать фотоны бесполезно), вы возвращаетесь к первоначальной кривой распределения, на которой видны интерференционные эффекты, как показано на фиг. 1.4,б. Когда же детектирование частично все же оказывается эффективным, возникает интерференция между большим количеством j1 и малым количеством j2 и вы получаете промежуточное распределение, такое, какое намечено на фиг. 1.4,в. Само собой разумеется, если нас заинтересуют одновременные отсчеты фотонов в счетчике D2 и электронов в х, то мы получим тот же результат. Если вы вспомните рассуждения гл. 37 (вып. 3), то увидите, что эти результаты описывают количественно то, что было сказано там.
Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас интересует только амплитуда того, что электрон попадает в х, причем вам безразлично, в какой счетчик попал фотон — в D1или в D2. Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! Никогда не складывайте амплитуды разных, отличных друг от друга конечных состояний. Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимоисключающих событий) реализовалась. У каждой альтернативы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закончится процесс. В конце процесса вы можете, если хотите, сказать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет. Так что мы не должны складывать амплитуды. Мы сперва возводим в квадрат модули амплитуд для всех возможных разных конечных состояний, а затем уж складываем. Правильный результат для электрона в x и фотона то ли в D1то ли в D2 таков:
§ 3. Рассеяние на кристалле
Следующий пример — это явление, в котором интерференцию амплитуд вероятности следует проанализировать тщательнее. Речь идет о процессе рассеяния нейтронов на кристалле. Пусть имеется кристалл, в котором много атомов, а в центре каждого атома — ядро; ядра расположены периодически, и откуда-то издалека на них налетает пучок нейтронов. Различные ядра в кристалле можно пронумеровать индексом i, где i пробегает целые значения 1, 2, 3, ... , N, а N равняется общему числу атомов. Задача состоит в том, чтобы подсчитать вероятность того, что нейтрон окажется в счетчике, изображенном на фиг. 1.5.
Фиг. 1.5. Измерение рассеяния нейтронов на кристалле.
Для каждого отдельного атома i амплитуда того, что нейтрон достигнет счетчика С, равна амплитуде того, что нейтрон из источника S попадет в ядро i, умноженной на амплитуду а рассеяния в этом месте и умноженной на амплитуду того, что он из i попадет в счетчик С. Давайте запишем это:
Написав это, мы предположили, что амплитуда рассеяния а — одна и та же для всех атомов. Здесь у нас есть множество, по-видимому, неразличимых путей. Они неразличимы оттого, что нейтрон с небольшой энергией рассеивается на ядре, не выбивая при этом самого атома с его места в кристалле — никакой «отметки» о рассеянии не остается. Согласно нашим прежним рассуждениям, полная амплитуда того, что нейтрон попал в С, включает в себя сумму выражения (1.11) по всем атомам:
Из-за того, что складываются амплитуды рассеяния на атомах, по-разному расположенных в пространстве, у амплитуд будут разные фазы, и это даст характерную интерференционную картину, которую мы уже анализировали на примере рассеяния света на решетке.
Интенсивность нейтронов как функция угла в подобном опыте действительно ч часто обнаруживает сильнейшие изменения — очень острые интерференционные пики, между которыми ничего нет (фиг. 1.6, а).