Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

Фиг. 13.16. Катион трифенилииклопропанила.

Правда, кольцо из трех атомов никогда не бывает легко сделать, потому что, когда связи в органической молекуле образуют равносторонний треугольник, всегда появ­ляются большие напряжения. Чтобы соединение было устой­чиво, структуру нужно как-то стабилизировать. Оказывается, что, если поставить по углам три бензольных кольца, можно сделать положительный ион. (Отчего нужно добавлять бензоль­ные кольца, непонятно.)

Подобным же образом можно также проанализировать и пятиугольное кольцо. Если вы начертите энергетическую диа­грамму, то качественно сможете убедиться, что шестиэлектронная структура должна быть особо

устойчива, так что такая мо­лекула должна быть устойчивее всего в виде отрицательного иона. И вот кольцо из пяти атомов действительно хорошо из­вестно, легко сооружается и действует всегда как отрицательный ион. Подобным же образом вы легко убедитесь, что кольцо из 4 и 8 атомов не очень интересно, а кольцо из 14 или 10 (как и кольцо из 6) должно быть особенно устойчиво в форме нейт­рального объекта.

§ 6. Другие применения приближения

Есть два других сходных случая, на которых мы остано­вимся лишь вкратце. Говоря о строении атома, можно считать, что электрон заполняет последовательные оболочки. Теорию движения электрона Шредингера удается с легкостью разра­ботать лишь для отдельного электрона, движущегося в «цент­ральном» поле — поле, зависящем только от расстояния от точки. Но как же тогда разобраться в том, что происходит в атоме, в котором 22 электрона?! Один из путей — воспользо­ваться приближением независимых частиц. Сперва вы подсчиты­ваете, что происходит с одним электроном. Получаете сколько-то там уровней энергии. Помещаете электрон в нижнее энерге­тическое состояние. В грубой модели вы продолжаете игнори­ровать взаимодействия электронов и продолжаете заполнять последовательные оболочки, но еще лучшие ответы получатся, если учесть (хотя бы приближенно) влияние электрического заряда электрона. Добавляя электрон, каждый раз вычис­ляйте амплитуду того, что он будет обнаружен в различных местах, и затем с ее помощью прикидывайте вид сферически симметричного распределения заряда. Поле этого распределе­ния (совместно с полем положительного ядра и всех предыдущих электронов) используйте для расчета состояний, доступ­ных очередному электрону. Таким путем вы можете получить вполне разумные оценки энергий нейтрального атома и раз­личных ионизованных состояний. Вы увидите, что и здесь имеются энергетические оболочки, так же как у электронов в кольцевой молекуле. При не совсем заполненной оболочке атом иногда охотнее присоединяет к себе один или несколько элект­ронов, а иногда охотнее их теряет, чтобы прийти в устойчивое состояние, когда оболочка заполнена.

Эта теория объясняет механизм, лежащий в основе самых фундаментальных химических свойств, проявляющихся в пе­риодической таблице элементов. Инертные газы — это те эле­менты, у которых как раз закончилось заполнение оболочки, и их особенно трудно заставить вступать в реакцию. (В действи­тельности, конечно, некоторые из них реагируют, например, с фтором или с кислородом, но в таких соединениях связь очень слаба; так называемые инертные газы инертны лишь отчасти.) Атом, у которого на один электрон больше или на один меньше, чем у инертного газа, легко теряет или присоединяет этот элект­рон, чтобы оказаться в особо устойчивых (низкоэнергетических) условиях, какие возникают от того, что оболочка заполнена до конца,— они являются очень активными химическими элемен­тами с валентностью +1 и -1.

В ядерной физике можно встретиться с другим подобным случаем. В атомном ядре протоны и нейтроны очень сильно взаимодействуют друг с другом. Но и при этом модель незави­симых частиц опять полезна для анализа структуры ядра. Сперва было открыто экспериментально, что ядра особо устой­чивы, если в них содержится определенное число нейтронов — а именно 2, 8, 20, 28, 50, 82. Ядра, содержащие в таком же коли­честве протоны, тоже особенно устойчивы. Поскольку вначале объяснения этим числам не было, их назвали «магическими числами» ядерной физики. Хорошо известно, что нейтроны и протоны друг с другом сильно взаимодействуют; поэтому люди были чрезвычайно поражены, когда выяснилось, что модель независимых частиц предсказывает оболочечное строение ядра, причем сами собой возникают несколько первых магических чисел. Модель эта предполагала, что каждый нуклон (протон или нейтрон) движется в центральном потенциальном поле, создаваемом средним влиянием всех прочих нуклонов. Однако модели не удавалось верно предсказать другие магические чис­ла. Но затем Мария Майер и независимо Йенсен с сотрудника­ми открыли, что, принимая модель независимых частиц и до­бавляя только поправку на так называемое «спин-орбитальное взаимодействие», можно в этой усовершенствованной модели получить все магические числа. (Спин-орбитальное взаимодей­ствие приводит к тому, что энергия нуклона оказывается ниже, если его спин направлен туда же, куда направлен его орбиталь­ный момент количества движения в ядре.) Теория дает даже больше — ее картина так называемой «оболочечной структуры» ядра позволяет предсказывать некоторые характеристики ядер и ядерных реакций.

Приближение независимых частиц оказалось полезным для широкого круга явлений — от физики твердого тела до химии, от биологии до ядерной физики. Такое приближение часто очень грубо, но оно в состоянии помочь нам понять, отчего бывают особо устойчивые условия — отчего возникают оболочки. Но поскольку оно опускает всю сложность взаимодействий между индивидуальными частицами, нас не должно удивлять, что часто ему не удается правильно предсказать многие важные детали.

* Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.

* Когда имеется пара состояний (с разными распределениями ам­плитуд) с той же энергией, мы говорим, что эта пара состояний «вырож­дена». Заметьте, что энергией E 0 – А могут обладать четыре электрона.

* Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s = ±.N/2 дают одно и то же состояние.

* Квазичастицы обсуждаемого типа могут действовать и как бозе-и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он — бозон.

* Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.

Глава 14

ЗАВИСИМОСТЬ АМПЛИТУД ОТ МЕСТА

§ 1. Как меняются амплитуды вдоль прямой

§ 2. Волновая функция

§ 3. Состояния с определенным импульсом

§ 4. Нормировка состояний с определенной координатой х

§ 5. Уравнение Шредингера

§ 6. Квантованные уровни энергии

§ 1. Как меняются амплитуды вдоль прямой

Выясним теперь, как в квантовой механике амплитуды вероятности меняются в простран­стве. В некоторых предыдущих главах у вас могло возникнуть смутное чувство, что кое о чем мы умалчиваем. Например, когда мы тол­ковали о молекуле аммиака, мы решили описы­вать ее через два базисных состояния. За одно из них мы выбрали случай, когда атом азота находится «выше» плоскости трех атомов во­дорода, а в качестве другого базисного состояния выбрали такие условия, когда атом азота стоит «ниже» плоскости трех атомов водорода. Почему же мы выбрали именно эту пару состоя­ний? Почему бы не считать, что атом азота мо­жет оказаться либо на расстоянии 2Е от плос­кости трех атомов водорода, либо на расстоянии 3Е, а может, и 4Е. Ведь атом азота может зани­мать множество положений. Или, когда шла речь о молекулярном ионе водорода, в котором имеется электрон, распределенный между двумя протонами, мы тоже вообразили два базисных состояния. Одно — когда электрон находится по соседству с протоном № 1, и другое, когда он пребывает в окрестностях протона № 2. Ясно, что многие детали мы упустили. Электрон ведь находится не точно у самого протона № 2, а только в его окрестностях. Он может оказаться и где-то повыше протона, и где-то пониже, и где-то слева, и где-то справа.

Поделиться:
Популярные книги

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Без Чести

Щукин Иван
4. Жизни Архимага
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Без Чести

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII