Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии.
Все спины направлены вверх, а тот, что в х 5 , перевернут.
Вообще, |хn> будет обозначать состояние с одним перевернутым спином, расположенным в координате хn n– гоатома.
Как же действует гамильтониан (13.5)
Отсюда следует
Стало быть, все члены гамильтониана, кроме тех, куда входит атом № 5, дадут нуль. Операция P^4,5, действуя на состояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется состояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,
Точно так же
Значит, изо всего гамильтониана выживут только члены
Действуя на |x5>, они дадут соответственно
В итоге
Когда гамильтониан действует на состояние |x5>, то возникает некоторая амплитуда оказаться в состояниях | x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вначале один спин был направлен вниз, имеется некоторая вероятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние | хn>гамильтониан дает
Заметьте, в частности, что если взять полную систему состояний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем,
уравнение (13.7) эквивалентно следующему:
Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn— амплитуда того, что некоторое состояние |y> находится
Подставим это пробное решение в наше обычное уравнение Гамильтона
используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде
Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn(амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распространения k и энергией
Е=2A(1-coskb), (13.12)
где b — постоянная решетки.
Решения с определенной энергией отвечают «волнам» переворота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону
Е=Аb2k2. (13.13)
Как и прежде, мы можем теперь взять локализованный волновой пакет (содержащий, однако, только длинные волны), который соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна
Такие «частицы» иногда именуют «магнонами».
§ 2. Две спиновые волны
Теперь мы хотели бы выяснить, что происходит, когда имеется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).
Фиг. 13.2. Состояния с двумя перевернутыми спинами.
Эти состояния можно, скажем, отмечать x– координатами тех двух узлов решетки, в которых оказались электроны с перевернутым спином. То, что на рисунке, можно обозначить |х2, х5>. В общем случае базисные состояния будут |хn, хm>— дважды бесконечная совокупность! При таком способе описания состояние | x4, х9> и состояние | х9, x4> совпадают, потому что каждое из них просто говорит, что в точках 4 и 9 спин перевернут; порядок их не имеет значения. Не имеет также смысла состояние | x4, х4> — такого просто быть не может. Любое состояние |y> мы можем описать, задав амплитуды того, что оно обнаружится в одном из базисных состояний.