Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Когда к полупроводнику добавлена донорная или акцепторная примесь, мы говорим о «примесном» полупроводнике.
Когда кристалл германия с некоторым количеством внедренной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических процессов, ведущих к равновесию, входит их полное число Nn. Если температура не слишком низкая, то число отрицательных носителей, поставляемых атомами донорной примеси, примерно равно количеству имеющихся атомов примеси. При равновесии уравнение (12.4) еще обязано соблюдаться; произведение NnNpпри данной температуре есть вполне определенное
Это означает, что добавление донорной примеси, которое увеличивает число Nn, вызывает такое уменьшение количества Npположительных носителей, что NnNpне изменяется. Если концентрация примеси достаточно высока, то число Nnотрицательных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чистом в других отношениях кристалле с небольшой концентрацией донорной примеси будут преобладать отрицательные носители; такой материал называется полупроводником «n– типа».
Если в кристаллической решетке добавлена примесь акцепторного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, создаваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновесных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведение постоянным. Материал с избытком положительных носителей называется полупроводником «p– типа».
Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциалов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что произойдет в материале n– типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной температуре (а особенно в кристалле с примесями) электроны перемещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале re-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электрической проводимости в таких веществах.
Если к полупроводнику n– типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле x, будет равна qnx. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна Ft/m, где F — сила, действующая на заряд; t — среднее время свободного пробега между столкновениями, а m— масса.
Зная скорость дрейфа, можно найти ток. Плотность электрического тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носителей. Поэтому плотность тока равна
Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен
Для материалов n– типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nnопределяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, tn, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит.
Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из
Для очень чистых веществ Nри Nnпримерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону
§ 3. Эффект Холла
Конечно, это очень странно, что в веществе, где единственными более или менее свободными объектами являются электроны, электрический ток вызывается дырками, которые ведут себя как положительные частицы. Мы хотим поэтому описать опыт, который довольно явно свидетельствует, что знак носителя электрического тока может быть положительным. Пусть имеется брусок, изготовленный из полупроводящего вещества (или из металла), и мы прикладываем к нему электрическое поле, чтобы вызвать ток в каком-то направлении, скажем в горизонтальном (фиг. 12.6).
Фиг. 12.6. Эффект Холла возникает при действии магнитных сил на носители.
Сверху и снизу указаны знаки заряда при положительных и отрицательных (в скобках) носителях.
Пусть мы также приложили к бруску магнитное поле под прямым углом к току, скажем, чтобы оно уходило в плоскость чертежа. Движущиеся носители будут испытывать действие магнитной силы q(vXВ). А так как средняя скорость дрейфа направлена либо направо, либо налево (смотря по тому, каков знак заряда носителя), то действующая на носители средняя магнитная сила будет направлена либо вверх, либо вниз. Впрочем, нет! При выбранных нами направлениях тока и магнитного поля магнитная сила, действующая на движущийся заряд, всегда будет направлена вверх. Положительные заряды, движущиеся в направлении j (направо), подвергнутся действию силы, направленной вверх. А если ток переносится отрицательными зарядами, то они будут двигаться влево (при том же знаке тока проводимости) и также испытывают действие силы, направленной кверху. Но после установления тока никакого движения носителей вверх не будет, потому что ток может течь только слева направо. Вначале несколько зарядов могут потечь вверх, образовав вдоль верхнего края полупроводника поверхностную плотность заряда и оставив равную по величине и обратную по знаку поверхностную плотность заряда на нижней грани кристалла. Заряды на верхней и нижней поверхностях будут накапливаться до тех пор, пока электрические силы, с которыми они действуют на движущиеся заряды, в точности погасят (в среднем) действие магнитной силы, и установившийся ток пойдет по горизонтали. Заряды на верхней и нижней поверхностях создадут по вертикали поперек кристалла разность потенциалов, которую можно измерить высокоомным вольтметром (фиг. 12.7).