Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n=0 не похоже на остальные. Пятерка уравнений при n=-2,-1, 0, +1 и +2 выглядит так:
Конечно, будут и другие уравнения при |n|>2. Они будут выглядеть так же, как (11.6).
Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.
Уравнение (11.10)
Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:
Это решение представляет комплексную волну с амплитудой а, бегущую в направлении +х, и волну с амплитудой b, бегущую в направлении -х.
Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят аn с nЈ-1, решаются формулой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением
E=E0– 2Acoskb. (11.30)
Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда амплитуда b будет, вообще говоря, комплексным числом.
То же самое можно сказать и о решениях аnпри nі1. Коэффициенты могут стать иными, так что следовало бы писать
Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравнениям для аn, кроме средней тройки в (11.28), с помощью следующих пробных решений:
Положение, о котором идет речь, иллюстрируется фиг. 11.6.
Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n=0.
Используя формулы (11.32) для а– 1и а+1, можно из средней тройки уравнений (11.28) найти а0 и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая xn=nb):
Вспомните,
тогда из первого уравнения получится
a0=1+b, (11.34)
а из третьего
a0=g, (11.35)
что согласуется друг с другом только тогда, когда
g=1+b. (11.36)
Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.
Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что
Мы получили полное решение для решетки с одним необычным
атомом.
Вас могло удивить, отчего это проходящая волна оказалась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и g — числа комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В действительности «сохранение числа электронов» будет выполнено лишь при условии
|b|2+|g|2=1. (11.38)
Попробуйте показать, что в нашем решении так оно и есть.
§ 7. Захват нерегулярностями решетки
Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n=0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е0+F ниже самого низа полосы (меньше, чем Е0– 2А), тогда электрон может оказаться «пойманным» в состояние с Е<Е0– 2А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k принимать мнимые значения. Положим k = ix. Для n<0 и для n>0 у нас опять будут разные решения. Для n>0 допустимое решение могло бы иметь вид
В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n>0 имело бы вид
Если подставить эти пробные решения в (11.28), то они удовлетворят всем уравнениям, кроме средней тройки, при условии, что
А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы