Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для которого Сnменяется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной dw/dk, где w=E/h.
Фиг. 11.5. Вещественная часть С(х n )
Подставляя (11.16) вместо Е, получаем
Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и классическая физика.
В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится
где mэфф — постоянная. Избыточная «энергия движения» электрона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная mэфф, именуемая «эффективной массой», дается выражением
Заметьте еще, что можно написать
Если мы решим назвать mэффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.
Не забывайте, что mэффничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом пространстве).
Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему приходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.
§ 4. Электрон в трехмерной решетке
Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Результаты оказываются очень похожими. Пусть имеется прямоугольная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что амплитуда прыжка к соседу в направлении х есть iAx/h; амплитуда прыжка в направлении у есть iAy/h, а амплитуда прыжка в направлении z есть iAz/h. Как же описать базисные состояния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами х, у, z, где (х, у, z) — одна из точек решетки. Если выбрать начало координат в одном из атомов, то все эти точки придутся на
х=n х а, y=n y b и z=n z с,
где nх, ny, nz —три целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у точек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в некотором состоянии |y> окажется в этом базисном состоянии, есть
С (х, у, z)=< электрон в х, у, z |y>.
Как и прежде, амплитуды С (х, у, z) могут меняться во времени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:
Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.
Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента
Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, kyи kzследующим образом:
Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k.
И действительно, (11.23) можно переписать в векторных обозначениях:
Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волновым числом k=(k2x+k2y+ k2z)1/2.