Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реальной решетки кремния или германия уравнения были бы другими. Но все существенное может стать ясным уже из результатов для прямоугольной решетки.
Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой
Разные A — это
Для энергий возле дна зоны формулу (12.1) можно приблизительно записать так:
(см. гл. 11, § 4).
Если нас интересует движение электрона в некотором определенном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно написать
где a — некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).
Фиг. 12.1. Энергетическая диаграмма для электрона в кристалле изолятора.
Такой график мы будем называть «энергетической диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).
Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного определенного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка перепрыгивает от атома а к атому b, в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)
Математика для дырки такая же, как для добавочного электрона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд Ах, Ayи Аz. У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обнаружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только разницей, что в некубических кристаллах масса зависит от направления движения. Итак, дырка напоминает частицу с положительным зарядом, движущуюся сквозь кристалл. Заряд частицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сторону, то на самом деле это в обратную сторону движутся электроны.
Если в нейтральный кристалл поместить несколько электронов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны начнут двигаться и потечет электрический
Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если приложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и происходит, когда их нейтрализуют электроны с металлического электрода.
Электроны и дырки могут оказаться в кристалле одновременно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны называют отрицательными носителями, а дырки — положительными носителями.
До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон—дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.
Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S),— это энергия Е– , показанная на фиг. 12.2.
Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного
электрона.
Это некоторая энергия,
превышающая Е– мин. Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S',— это энергия Е+ (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е+мин).
Фиг. 12.3. Энергия Е + , требуемая для «рождения» дырки в состоянии S'.
А чтобы создать пару в состояниях S и S', потребуется просто энергия Е– +Е+.
Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают помещать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два графика.
Фиг. 12.4. Энергетические диаграммы для электрона и дырки.
Преимущества такого графика в том, что энергия Eпары=Е– +Е+ , требуемая для образования пары (электрона в S и дырки в S’ ), дается попросту расстоянием по вертикали между S и S', как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энергетической шириной, или шириной щели, и равняется