Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
(Вспомните, что qn=-qp.) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.
Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить re-область с p– областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p– область с n–
Возьмем сперва проводничок из материала без примесей. Если подсоединить его к re-области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p- и n– областями. А когда мы подведем нашу чистую проволоку к p– области перехода, то там снова, на новом переходе, возникнет разность потенциалов, опять равная половине падения потенциала на p—n– переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны p—n– перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки потенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энергия будет превращаться в электрическую. Это явление определяет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явление используется и в небольших холодильниках.
Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p—n– перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действительно существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, которое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p– область, а электрон — в n– область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.
Обсуждая свойства полупроводникового перехода, мы предполагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем аннигилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводникового перехода.
Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требующееся электрону или дырке для того, чтобы найти противоположного партнера и аннигилировать, для типичных полупроводниковых материалов колеблется между 10– 3 и 10– 7 сек. Кстати, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кристалле,— того времени, которым мы пользовались при анализе проводимости. В типичном p—n– переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, возникшую в области перехода, намного меньше времени рекомбинации. Поэтому большинство пар вливается во внешний ток.
§ 5. Выпрямление на полупроводниковом переходе
Теперь мы покажем, как получается, что p—n– переход действует как выпрямитель. Если мы к переходу приложим напряжение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпрямится». Посмотрим еще раз, что получается в условиях равновесия, описанных кривыми фиг. 12.9. В материале p– типа имеется высокая концентрация Npположительных носителей.
Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.
Допустим, однако, что мы снизили напряжение на n– стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p– области в n– область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем
Этот ток превосходит ток I0 в
Ток из p– области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.
Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p– область. (Если DV больше естественной разности потенциалов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:
Дырочный ток I течет в n– область. Там дырки диффундируют в самую глубь n– области и могут, вообще говоря, аннигилировать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, восполняется током электронов из внешнего контакта материала n– типа.
Когда DV=0, то и ток в (12.14) равен нулю. Если DV положительна, ток с напряжением резко растет, а если DV отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n– области перехода.