Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Таблица 16.7 ·ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja=1, jb=1)
I /, My. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно
Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во многих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же просто привели в табл. 16.7 окончательный результат.
Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше времени на другие примеры.
Добавление 1. Вывод матрицы поворота
Для тех, кто хотел бы разобраться в этом поподробнее, мы вычислим сейчас общую матрицу поворота для системы со спином (полным моментом количества движения) j. В расчете общего случая на самом деле большой необходимости нет; важно понять идею, а все результаты вы сможете найти в таблицах, которые приводятся во многих книжках. Но, с другой стороны, вы зашли уже так далеко, что у вас, естественно, может возникнуть желание убедиться, что вы и впрямь в состоянии понять даже столь сложные формулы квантовой механики, как (16.35).
Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2/ объектов со спином 1/2. Состояние с m=j имело бы вид | + + + . . . +> (с j плюсами). Для m=j-1 было бы 2j членов типа | + + . . . + + ->, | + + . . . +- +>и т. д. Рассмотрим общий случай, когда имеется r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси r от каждого из r плюсов появится множитель e+ij/2. В итоге фаза изменится на i(r/2-s/2)j. Мы видим, что
m=(r-s)/2 . (16.59)
Как и в случае J=3/2, каждое состояние с определенным т должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозможным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать
где
Введем еще новые обозначения, они нам помогут в счете. Ну а поскольку мы уж определили состояния при помощи (16.60), то два числа r и s определяют состояние ничуть не хуже, чем j и m. Мы легче проследим за выкладками, если обозначим
где [см.. (16.61)]
r = j+m, s = j-т.
Далее, (16.60) мы запишем, пользуясь специальным обозначением
Обратите внимание, что показатель степени в общем множителе мы изменили на +1/2. Это оттого, что внутри фигурных скобок в (16.60) стоит как раз N=(r+s)!/r!s! слагаемых. Если сопоставить (16.63) с (16.60), то ясно, что
где N — количество различных слагаемых в скобках. Эти обозначения удобны тем, что каждый раз при повороте все знаки плюс вносят один и тот же множитель, так что в итоге он получается в r– й степени. Точно так же все знаки минус дадут некоторый множитель в s– й степени, в каком бы порядке эти знаки ни стояли.
Теперь положим, что мы повернули нашу систему вокруг оси у на угол q. Нас интересует
где С=cosq/2 и S=sin q/2. Когда же Ry(q) действует на | ->, это приводит к
Так что искомое выражение равно
Теперь надо возвысить биномы в степень и перемножить. Появятся члены со всеми степенями |+ у от нуля до r+s. Посмотрим, какие члены дадут r'-ю степень |+ ). Они всегда будут сопровождаться множителем типа |->s', где s'=2j– r'. Соберем их вместе. Получится сумма членов типа |+>r' |->s' с численными коэффициентами Аr' , куда входят коэффициенты биномиального разложения вместе с множителями С и S. Уравнение (16.65) тогда будет выглядеть так:
Теперь разделим каждое Аr'на множитель [(r'+s')\lr'!s'!]l/2 и обозначим частное через Вr. Тогда (16.66) превратится в
[Можно просто сказать, что требование, чтобы (16.67) совпадало с (16.65), определяет Br’]