Физика для всех. Движение. Теплота
Шрифт:
Колебание пружин
Легко заставить колебаться шарик, подвесив его на пружину. Закрепим один конец пружины и оттянем шарик (рис. 46). В растянутом состоянии пружина находится, пока мы оттягиваем шарик рукой. Если отпустить руку, пружина будет сокращаться, и шарик начнет движение к положению равновесия. Так же, как и маятник, пружина приходит в состояние покоя не сразу. По инерции будет пройдено положение равновесия, и пружина начнет сжиматься. Движение шарика замедляется и в какой-то момент он останавливается, чтобы тут же начать движение в обратную сторону. Возникает колебание с теми же типичными признаками, с которыми мы ознакомились, изучая маятник. При отсутствии трения колебание продолжалось бы без конца. При наличии трения
Зачастую роли пружины и маятника аналогичны. И та, и другой служат для поддержания постоянства периода в часах. Точный ход современных пружинных часов обеспечивается колебательным движением маленького махового колеса-баланса. В колебание его приводит пружина, которая свертывается и развертывается десятки тысяч раз в сутки.
У шарика на нитке роль возвращающей силы играла касательная составляющая силы тяжести. У шарика на пружине возвращающая сила является силой упругости сжатой или растянутой пружины. Таким образом, величина упругой силы прямо пропорциональна смещению: F= kx.
Коэффициент kимеет в данном случае другой смысл. Теперь это жесткость пружины. Жесткая пружина – это та, которую трудно растянуть или сжать. Именно такой смысл и имеет коэффициент k. Из формулы ясно: kравно силе, необходимой для растяжения или сжатия пружины на единицу длины.
Зная жесткость пружины и массу подвешенного к ней груза, мы найдем при помощи формулы T= 2·sqrt( m/ k) период свободного колебания. Например, груз с массой 10 г на пружине с жесткостью 10 5дин/см (это довольно жесткая пружина – стограммовая гиря растянет ее на 1 см) будет совершать колебания с периодом T= 6,28·10 – 2с. В одну секунду будет происходить 16 колебаний.
Чем мягче пружина, тем медленнее происходит колебание. В том же направлении влияет и увеличение массы груза.
Применим к шарику на пружинке закон сохранения энергии.
Мы знаем, что для маятника сумма кинетической и потенциальной энергий K+ Uне изменяется.
Значения Kи Uдля маятника нам известны. Закон сохранения энергии говорит, что
Но то же самое верно и для шарика на пружинке.
Вывод, который мы неизбежно должны сделать, весьма интересен.
Кроме потенциальной энергии, с которой мы познакомились раньше, существует, таким образом, потенциальная энергия и другого рода. Первая называется потенциальной энергией тяготения. Если бы пружина была расположена горизонтально, то потенциальная энергия тяготения во время колебания, конечно, не менялась бы. Новая потенциальная энергия, обнаруженная нами, называется потенциальной энергией упругости. В нашем случае она и равна kx 2/2, т.е. зависит от жесткости пружины и прямо пропорциональна квадрату величины сжатия или растяжения.
Сохраняющаяся неизменной полная энергия колебаний может быть записана
Величины aи v 0, входящие в последние формулы, представляют собой максимальные значения, которые принимают смещение и скорость во время колебания, – это амплитудные значения смещения и скорости. Происхождение этих формул вполне понятно. В крайнем положении, когда x= a, кинетическая энергия колебания равна нулю и полная энергия равна значению потенциальной энергии. В среднем положении смещение точки от положения равновесия, а следовательно, и потенциальная энергия равны нулю, скорость в этот момент максимальна, v= v 0и полная энергия равна кинетической.
Учение о колебаниях – обширный раздел физики. С маятниками и пружинками довольно часто приходится иметь дело. Но, конечно, этим не исчерпывается список тел, колебания которых приходится изучать. Колеблются фундаменты, на которых установлены машины, могут прийти в колебание мосты, части зданий, балки, провода высокого напряжения. Звук – это колебания воздуха.
Мы перечислили некоторые примеры механических колебаний. Однако понятие колебания может быть отнесено не только к механическим смещениям тел или частиц от положения равновесия. Во многих электрических явлениях мы тоже сталкиваемся с колебаниями, причем эти колебания происходят по законам, очень похожим на те, которые мы рассмотрели выше. Учение о колебаниях пронизывает все области физики.
Более сложные колебания
То, что говорилось до сих пор, относится к колебаниям вблизи положения равновесия, происходящим под действием возвращающей силы, величина которой прямо пропорциональна смещению точки от положения равновесия. Такие колебания происходят по закону синуса. Они называются гармоническими. Период гармонических колебаний не зависит от амплитуды.
Значительно сложнее колебания с большим размахом. Такие колебания происходят уже не по закону синуса, а развертка их дает более сложные кривые, различные для разных колеблющихся систем. Период перестает быть характерным свойством колебания и начинает зависеть от амплитуды.
Трение существенно изменяет любые колебания. При наличии трения колебания постепенно затухают. Чем сильнее трение, тем затухание происходит быстрее. Попробуйте заставить колебаться маятник, погруженный в воду. Вряд ли удастся добиться, чтобы этот маятник совершил больше одного-двух колебаний. Если погрузить маятник в очень вязкую среду, то колебания может и вовсе не быть. Отклоненный маятник просто вернется в положение равновесия. На рис. 47 показан типичный график затухающего колебания. По вертикали отложено отклонение от положения равновесия, а по горизонтали – время. Амплитуда (максимальный размах) затухающего колебания уменьшается с каждым колебанием.
Резонанс
Ребенка посадили на качели. Он не достает ногами до земли. Чтобы раскачать его, можно, конечно, высоко поднять качели и потом отпустить. Но это довольно тяжело, да в этом и нет необходимости: достаточно слегка толкать качели в такт колебаниям, и через короткое время качели сильно раскачаются.
Для того чтобы раскачать тело, надо действовать в такт колебаниям. Иначе говоря, надо сделать так, чтобы толчки происходили с тем же периодом, что и собственные колебания тела. В подобных случаях говорят о резонансе.