Чтение онлайн

на главную - закладки

Жанры

Физика: Парадоксальная механика в вопросах и ответах
Шрифт:

Следовательно, вращающееся кольцо будет растягиваться с силой F и напряжениями ? даже без контакта с каким-нибудь другим телом. Аналогичным образом возникают напряжения во вращающихся телах любой конфигурации, например, в движущихся гибких массивных замкнутых связях – ремнях, цепях, а также маховиках – накопителях кинетической энергии.

Рис. 10. Схематичное представление вращающегося кольца: а – замкнутый вращающийся многоугольник с помещенными в вершинах углов точечными массами; б – силы, действующие

на отдельный груз.

Рис. 11. Схема для определения напряжений во вращающемся кольце.

3.5. Вопрос. Как накопить во вращающемся маховике наибольшую кинетическую энергию?

Ответ. Кинетическая энергия вращающегося тонкого кольца массой т, как и для прямолинейно движущейся массы, пропорциональна квадрату его линейной (окружной) скорости:

Ведь и в том и в другом случаях масса т движется с одной и той же скоростью v. Разница лишь в том, что в случае прямолинейного движения в движущемся теле не возникает никаких напряжений, а при вращении кольца (как и ремня, цепи, любой плоской массивной замкнутой связи), в нем возникают напряжения, не зависящие от радиуса кольца и определяемые формулой (3.3). Следовательно, в прямолинейно движущейся массе можно беспредельно (в рамках классической механики) повышать скорость и кинетическую энергию. Во вращающейся же массе, в данном случае кольце, мы жестко лимитированы прочностью материала, причем и кинетическая энергия и напряжения в материале пропорциональны квадрату окружной скорости.

А если это будет не кольцо, а тело иной формы? Удастся ли при той же прочности материала накопить большую кинетическую энергию? Для анализа этого вопроса удобнее всего выразить энергию и прочность через удельные показатели – удельную энергоемкость е = Е/т и удельную прочность х = ?/?. Тогда для маховика в виде вращающегося кольца:

Для маховиков других форм коэффициент k будет принимать другие значения. Например, для диска с очень маленьким центральным отверстием он будет равен 0,3; для диска вообще без отверстия – 0,6. Самой лучшей формой маховика для накопления кинетической энергии является диск равной прочности. Такую форму имеют, например, диски паровых и газовых турбин – толстые в центре и тонкие на периферии.

3.6. Вопрос. Можно ли создать энергоемкий маховик с переменным моментом инерции?

Ответ. Устройство, изображенное на рис. 6, в принципе позволяет как накапливать кинетическую энергию, так и изменять момент инерции. Но из-за низкой прочности такая конструкция будет иметь ничтожную удельную энергоемкость. Если изготовить маховик из резины, то в процессе вращения его момент инерции будет расти тем более, чем больше угловая скорость маховика. К кинетической энергии при этом добавится потенциальная, накопленная при растяжении резины.

Но интерес представляют не маховики с «пассивным» изменением момента инерции, а те, у которых этот показатель можно менять принудительно. Для чего же это может потребоваться?

При постоянном кинетическом моменте маховика можно увеличивать момент инерции за счет уменьшения угловой скорости и наоборот. Пример – человек с гантелями в руках на так называемой платформе Жуковского – диске, закрепленном на стойке на подшипниках (рис. 12, а, б).

Рис. 12.

Человек на платформе (скамье) Жуковского: а – с разведенными в сторону руками и большим моментом инерции; б – со сдвинутыми к центру руками и минимальным моментом инерции

Если человек, стоя на этой платформе с разведенными в стороны руками, вращается (рис. 12, а), то сведя руки с гантелями к центру (рис. 12, б), он снижает свой момент инерции, за счет чего значительно увеличивает угловую скорость. Маховики с регулируемым переменным моментом инерции могли бы обеспечить практически любую угловую скорость, необходимую рабочему органу машины, например, колесам автомобиля.

3.7. Вопрос. К каким последствиям может привести замена инерциальной системы отсчета на неинерциальную, например, вращающуюся?

Ответ. Каждому относительному движению тела во вращающейся системе отсчета можно поставить в соответствие движение точно такого же тела относительно инерциальной системы координат. Но для такого соответствия надо воспроизвести не только те реальные силы, которые действовали на исходное тело, но и добавить новые силы, соответствующие эйлеровым силам инерции в относительном движении исходного тела. Эйлеровы силы инерции здесь определяются как реальные силы, действующие на тело, в предположении, что подвижная система отсчета условно принимается за неподвижную. Например, если поворачивающий автобус мы примем за неподвижный, то нам придется считать реальными центробежные силы, действующие на повороте.

Таким образом, если мы свяжем подвижную систему координат с Землей, то ускорение точки на Земле в «абсолютной» системе – реальное ускорение – будет являться векторной суммой трех ускорений: относительного, переносного и кориолисова (по имени французского механика XIX века Густава Кориолиса), которое возникает тогда, когда подвижная система координат вращается. Вот с этим-то кориолисовым ускорением и соответствующей ему кориолисовой силой начинают происходить «чудеса» наподобие тех, что происходят с даламберовыми силами инерции. Их начинают считать реально существующими, приписывать им соответствующие действия и т. д.

Здесь надо твердо помнить, что и переносные, и кориолисовы силы инерции – силы нереальные, они зависят только от выбора системы координат и не отражают взаимодействий взятой точки с другими точками. Не имеют эти силы и противодействия, которое по третьему закону Ньютона должна иметь каждая сила. Силы инерции, какими бы они ни были, всегда нереальны; и нельзя верить, если даже в учебнике написано, что они на что-то «действуют» (см. вопрос 3.3). Силы эти, по образному выражению известного физика Ричарда Фейнмана, – «псевдосилы».

3.8. Вопрос. Можно ли определить эйлеровы силы инерции не формально, а исходя из физической сути явлений?

Ответ. Можно, хотя на это понадобится воображение [17] . Рассмотрим вспомогательное тело, полностью идентичное основному. Пусть это вспомогательное тело совершает в точности такие же движения по отношению к произвольно выбранной «абсолютной» системе координат, какие совершает основное тело по отношению к выбранной неинерциальной системе координат. Таким образом, на все точки вспомогательного тела действуют те же физические силы, что и на основное тело. Однако, чтобы движение вспомогательного тела относительно «абсолютной» системы координат в точности повторяло движение основного тела относительно неинерциальной системы координат, необходимо к вспомогательной системе приложить, помимо всех физических сил основной системы, еще и дополнительные силы. Так как движение рассматривается по отношению к «абсолютной», инерциальной системе отсчета, то это могут быть только физические силы. Очевидно, что они точно соответствуют эйлеровым силам инерции.

Поделиться:
Популярные книги

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

В ожидании осени 1977

Арх Максим
2. Регрессор в СССР
Фантастика:
альтернативная история
7.00
рейтинг книги
В ожидании осени 1977