Физика в технике
Шрифт:
Луч света от источника падает на полупрозрачное зеркало 3, где делится на два луча.
Луч, отраженный от зеркала, дойдя до отражателя О1 возвращается по тому же пути обратно и попадает на экран. Луч, прошедший
Таким образом, на экран падают одновременно два луча, колебания в которых имеют одну и ту же частоту и одинаковый сдвиг фаз. На экране можно наблюдать сложение (интерференцию) этих двух лучей в виде чередующихся светлых и темных полос.
Если бы существовал абсолютно неподвижный и неувлекаемый мировой эфир, то при движении Земли вокруг Солнца существовал бы «эфирный ветер».
В этом случае луч света, движущийся по направлению движения Земли, имел бы меньшую скорость, чем луч света, движущийся в противоположную сторону. Это должно было бы привести к изменению (смещению) интерференционных полос на экране при повороте всей системы относительно направления движения Земли.
Опыт показал, что никакого смещения интерференционных полос при вращении всей установки (при этом плечи I и II менялись местами) не произошло. Таким образом было доказано, что скорость света в движущейся системе постоянна и не зависит от скорости самой движущейся системы.
Наблюдение Де Ситтера за движением двойных звезд также доказало тот факт, что скорость света всегда постоянна.
Из этого сделали вывод, что постоянство скорости света — закон природы, его следует принимать во внимание и строить на нем теорию объективно существующего физического мира.
Здесь следует рассказать о теории относительности. Теория относительности, созданная Эйнштейном, по существу основывается на постоянстве скорости света и на так называемом принципе относительности, заключающемся в том, что никакими опытами (ни механическими, ни электромагнитными) нельзя обнаружить равномерное и прямолинейное движение относительно пустого пространства.
Принцип относительности Эйнштейна является более общим по сравнению с принципом относительности Галилея. По Галилею относительно только движение, а по Эйнштейну относительными являются и такие величины, как длина, масса любого тела и временной интервал, т. е. промежуток времени, прошедший между двумя какими-либо причинно-связанными событиями.
«Необычность» выводов теории относительности таких, как замедление времени в движущихся по отношению к «неподвижному» наблюдателю системах, сокращение тел в направлении их движения и т. д., является прямым следствием постоянства скорости света.
Относительность хода времени в движущихся друг относительно друга материальных системах хорошо иллюстрирует следующий мысленный опыт, показывающий, что два причинно-обусловленные события, одновременные в одной системе, оказываются неодновременными в другой системе.
Представим себе космическую ракету с космонавтом, проносящуюся мимо нас со скоростью, близкой к скорости света. Допустим, что (космонавт находится в центре ракеты и может с помощью электрических сигналов или световых лучей, воспринимаемых фотоэлементами, включать и выключать две лампочки, находящиеся на равных расстояниях от него в головной и хвостовой частях ракеты.
Что же увидит космонавт при включении лампочек (рис. 6, а)?
Поскольку скорость света постоянна во всех системах, она будет постоянна и в движущейся ракете. Так как лампочки находятся на одинаковых расстояниях от космонавта, он увидит, что после подачи сигнала обе они зажгутся одновременно. Сигнал пройдет до обеих лампочек за одинаковое время, и свет от них придет к наблюдателю также одновременно.
Наблюдателю, мимо которого проносится космический корабль, будет казаться, что сигнал, движущийся по направлению движения ракеты, вынужден догонять устройство включения передней лампочки, задняя же лампочка вместе со своим приемным устройством включения будет двигаться навстречу сигналу, распространяющемуся против движения ракеты.
Таким образом, сигнал, движущийся навстречу движению ракеты, быстрее включит заднюю лампочку, чем сигнал, распространяющийся вперед, включит переднюю (рис. 6, б).
Значит, в то время как космонавт увидит одновременное загорание двух лампочек, «неподвижный» наблюдатель увидит, что лампочки зажгутся неодновременно. Этот простой пример показывает, что два причинно-обусловленных события, одновременные в одной системе, оказываются неодновременными в другой системе, т. е. что время не является чем-то абсолютным.
В настоящее время теория относительности настолько глубоко вошла в теоретическую физику, что такой ее раздел, как, например, механика больших скоростей, не мыслим без этой теории.
Являясь наиболее точкой и общей, теория относительности открывает поистине неограниченные возможности в покорении человеком бесконечных просторов Вселенной.
В самом деле, если, с точки зрения «старой» физики, максимальное расстояние, на которое может проникнуть в космос человек, определяется всего несколькими десятками световых лет (при условии, что космический корабль будет двигаться со скоростью, близкой к скорости света), то на основании эффекта замедления времени для движущейся ракеты, предсказанного теорией относительности, человек в течение своей жизни может как угодно далеко проникнуть в мировое пространство.
С точки зрения земного наблюдателя, время на ракете будет замедляться в
Так, при скорости v = 0,9с время на движущейся ракете будет идти в 2,3 раза медленнее, при v = 0,99с — в 7,1 раза, а при v = 0,999с — в 22,3 раза. При этом необходимо заметить, что приведенные формулы справедливы лишь для случая, когда время разгона ракеты значительно меньше всего времени полета.