Фундаментальная радиохимия
Шрифт:
Вот так предупреждается образование новой "паразитной" лавины, о которой шла речь выше, и разряд будет завершен после одной электронно-фотонной лавины, возникшей после одного акта первичной ионизации.
Самогасящиеся счетчики имеют ограниченный срок жизни из-за необратимого распада молекул гасящего газа: после фиксации около 109 импульсов счетчик приходит в негодность. В этом отношении большими преимуществами обладают так называемые галогенные счетчики. Они обычно заполняются неоном (с очень небольшой примесью аргона), а роль гасящей добавки в этих счетчиках выполняют галоиды при содержании около 0,1%. Уже при небольших напряжениях вторичные электроны будут возбуждать атомы неона, которые, в свою очередь, будут ионизировать атомы аргона (метастабильный уровень неона 16,57 эВ, а ионизационный потенциал аргона 15,7 эВ). Образовавшиеся ионы аргона при соударениях с молекулами галоида станут нейтрализоваться за счет ионизации галоидов. В итоге
Счетчик Гейгера-Мюллера прост, дешев и надежен; столь же простой является и регистрирующая аппаратура. Но разрешающая способность этих счетчиков относительно невысока: так называемое "мертвое время" (время после регистрации импульса, в течение которого счетчик не реагирует на новые акты ионизации, происходящие внутри него) имеет порядок 10–4 с. Поэтому рекомендуется ограничивать скорость счета при измерении активности препарата, не поднимая ее выше значений (3–6) 103 имп/мин, – при этих условиях не требуется введения специальных поправок на "мертвое время" данным измерениям. Эта рекомендация, разумеется, имеет смысл только тогда, когда экспериментатор сам изготовляет препарат или влияет на его изготовление.
Итак, амплитуда импульса, возникающего в счетчике под действием ионизирующей частицы, зависит от напряжения на электродах, а для пропорциональных счетчиков – и от энергии частицы. Подаваемое на счетчик напряжение всегда колеблется в некоторых пределах, а энергии отдельных частиц могут сильно различаться между собой (например, у -радиоактивных нуклидов). Поэтому для того чтобы работа счетчика была удовлетворительна, необходимо среди других условий соблюдать следующие два. Во-первых, любая ионизирующая частица должна возбуждать в счетчиках только один импульс и, во-вторых, регистрирующее устройство должно срабатывать на каждый возникающий в детекторе импульс. Если эти условия выполнены, то число импульсов, регистрируемых в единицу времени от одного и того же радиоактивного препарата (так называемая скорость счета), остается постоянным в некоторой области напряжений, подаваемых на счетчик. Эта область напряжений и является рабочей областью счетчика.
Для нахождения рабочей области напряжений снимают, используя препарат с постоянной радиоактивностью, счетную характеристику счетчика – зависимость скорости счета импульсов от приложенного напряжения. Типичная счетная характеристика газового счетчика приведена на рис. 1.17.
В точке Uа, соответствующей началу счета, начинается регистрация импульсов. Область, отвечающую напряжениям UbUc, называют плато счетной характеристики. У некоторых типов газовых счетчиков плато начинается практически сразу же (через 10–15 В) после напряжения начала счета. Регистрируемая скорость счета в области плато может несколько увеличиваться с ростом напряжения на счетчике, что объясняется появлением ложных импульсов, образующихся, например, за счет эмиссии вторичных электронов с катода. Поэтому в области плато счетная характеристика часто имеет небольшой наклон.
Количественно наклон плато счетной характеристики (%) оценивают по формуле
где I – увеличение скорости счета при изменении напряжения на счетчике на U В.
Рис. 1.17.Типичная счетная характеристика газового счетчика.
Счетная характеристика тем лучше, чем больше плато по протяженности и чем меньше его наклон. Длина плато и его наклон зависят от того, в каком режиме – пропорциональном или гейгеровском – работает счетчик, и от его конструктивных особенностей. У лучших счетчиков наклон плато практически отсутствует, а протяженность плато достигает 400–500 В. Счетчик считается пригодным для работы, если наклон плато счетной характеристики и его протяженность не выходят за пределы, указанные в паспорте счетчика.
Рабочее напряжение Up, при котором ведут измерение на счетчике, рекомендуется выбирать в середине плато или в первой трети плато, при условии стабильного напряжения на электродах счетчика и постоянно (не реже 1 раза в 2–3 дня) контролировать положение рабочего напряжения на плато счетной характеристики.
По своему внешнему виду кривая, приведенная на рис. 17, напоминает график зависимости амплитуды импульса или тока от напряжения (см. рис. 1.14 и 1.16). Это сходство иногда приводит к путанице. Следует иметь в виду, что сходство между кривыми чисто формальное. Если на рис. 16 речь идет об изменении амплитуды импульса, вызванного прохождением через детектор одной ядерной частицы, то на рис. 17 о числе регистрируемых в единицу времени импульсов, причем соответствующие им амплитуды могут быть как равны, так и различны.
В основе работы сцинтилляционного детектора лежит способность некоторых материалов – сцинтилляторов – преобразовывать энергию ядерных излучений в фотоны – кванты видимого или ультрафиолетового светового излучения. Отдельная вспышка света, вызванная прохождением через сцинтиллятор ядерной частицы или -кванта, Получила название сцинтилляции.
В сцинтилляционных детекторах для подсчета сцинтилляций используют фотоэлектронные умножители (ФЭУ). Использование ФЭУ дает возможность провести регистрацию отдельных световых импульсов, вызванных прохождением через сцинтиллятор – и -частицы или -кванта, в результате чего сцинтилляционные детекторы можно использовать в регистрирующих системах дифференциального типа. Детектор излучения в этом случае называют сцинтилляционным счетчиком. Блок-схема регистрирующего прибора со сцинтилляционным счетчиком дана на рис. 1.18.
Рис. 1.18. Блок-схема регистрирующего прибора со сцинтилляционным счетчиком. d1…..di– диноды, Ra– анодная нагрузка, R1….Ri– сопротивление делителя напряжения.
Кванты света (фотоны), возникающие в материале сцинтиллятора 1, попадают на фотокатод ФЭУ 4. Для увеличения доли света, передаваемой от мест возникновения фотонов в сцинтилляторе к фотокатоду, сцинтиллятор окружают отражателем 2, изготовленным, например, из -оксида алюминия. Для передачи фотонов от сцинтиллятора на фотокатод в ряде случаев используют светопровод 3, выполненный например, из плексигласа. Наличие светопровода обеспечивает более равномерное распределение фотонов по всей площади фотокатода, что, улучшает стабильность работы детектора. Роль фотокатода 4 выполняет полупрозрачный слой фоточувствительного вещества, нанесенный с внутренней стороны на торец стеклянного баллона ФЭУ. Внутри баллона поддерживается высокий вакуум. Фотокатод должен быть хорошим эмиттером электронов. Таким свойством обладает сурьмянистый цезий Cs3Sb, его и используют обычно в качестве фоточувствительного вещества.
Внутри ФЭУ между фотокатодом и анодом 5 расположены диноды d1, d2, di, …, также покрытые слоем вещества с малой работой выхода электронов. Фотокатод, как правило, несет отрицательный потенциал относительно земли. Диноды и анод имеют положительные потенциалы относительно фотокатода, причем потенциал каждого последующего динода в направлении от фотокатода к аноду более положителен, чем потенциал предыдущего. Система динодов обеспечивает первичное усиление электрического импульса, который образуется в ФЭУ под действием вспышки света, возникающего в сцинтилляторе. Дальнейшее усиление импульса происходит в усилителе 6. Блок-схема регистрирующего прибора со сцинтилляционным счетчиком может включать дискриминатор 7. Дискриминатор пропускает те электрические импульсы, амплитуда которых соответствует порогу дискриминации, т. е. больше (или меньше) определенного напряжения, установленного на этом приборе. Порог дискриминации можно варьировать при помощи соответствующего переключателя. Прошедшие через дискриминатор импульсы попадают на электронный блок регистрации 8. Источником высоковольтного постоянного напряжения, необходимого для работы ФЭУ, служит блок питания 9.
Конец ознакомительного фрагмента.