Чтение онлайн

на главную - закладки

Жанры

Голая статистика. Самая интересная книга о самой скучной науке
Шрифт:

b = 4,5. Наша оценка для b (4,5) называется коэффициентом регрессии или, на статистическом жаргоне, «коэффициентом по росту», поскольку такой коэффициент служит наилучшей оценкой зависимости между ростом и весом участников исследования Americans’ Changing Lives. У коэффициента регрессии имеется удобная интерпретация: увеличение на одну единицу независимой переменной (рост) ассоциируется с увеличением на 4,5 единицы зависимой переменной (вес). Для нашей выборки данных это означает, что увеличение роста на один дюйм сопряжено с увеличением веса на 4,5 фунта. Таким образом, если бы мы не располагали никакой другой информацией, то нашим оптимальным предположением относительно веса участника исследования Americans’ Changing Lives, рост которого составляет 5 футов и 10 дюймов (то есть 70 дюймов), было бы –135 + 4,5 x 70 = 180 фунтов.

Это наша победа, поскольку нам удалось получить численное выражение наилучшего приближения линейной зависимости между ростом и весом участников исследования Americans’ Changing Lives. Те же самые базовые инструменты можно использовать для исследования более сложных зависимостей и получения ответов

на более социально значимые вопросы. При любом коэффициенте регрессии вас, по сути, будут интересовать три вещи: знак, величина и значимость.

Знак. Знак (положительный или отрицательный) при коэффициенте для независимой переменной указывает направление его связи с зависимой переменной (исход, который мы пытаемся объяснить). В рассматриваемом нами случае коэффициент по росту является положительным. Более высокие люди, как правило, имеют больший вес. Некоторые зависимости действуют в противоположном направлении. Скажем, можно ожидать, что связь между занятиями спортом и весом будет отрицательной. Если бы в исследовании Americans’ Changing Lives фигурировали, например, данные о «количестве миль, пробегаемых участником за один месяц», то я бы нисколько не сомневался, что коэффициент по «количеству пробегаемых миль» будет отрицательным: чем большее количество миль вы ежемесячно пробегаете, тем меньше ваш вес.

Величина. Насколько велика наблюдаемая нами зависимость между независимой и зависимой переменными? Можно ли считать ее величину существенной для нас? В рассматриваемом нами случае увеличение роста человека на дюйм ассоциируется с прибавкой веса на 4,5 фунта; в процентном выражении это значительная доля массы тела типичного человека. В объяснении того, почему одни люди весят больше, чем другие, рост, несомненно, является важным фактором. В других исследованиях мы можем обнаружить объясняющую переменную, которая оказывает статистически значимое влияние на интересующий нас исход (это означает, что наблюдаемый эффект вряд ли объясняется чистой случайностью), но оно порой бывает настолько малым, что может считаться несущественным, или незначимым. Например, допустим, что мы исследуем определяющие факторы дохода. Объясняющими переменными здесь могут быть образование, стаж работы и т. п. При использовании достаточно крупного набора данных ученые также могут прийти к выводу, что люди с более белыми зубами зарабатывают на 86 долларов в год больше, чем остальные работники, ceteris paribus. (Ceteris paribus по-латыни означает «при прочих равных условиях».) Положительный и статистически значимый коэффициент по переменной «белые зубы» предполагает, что те, кого мы сравниваем, в остальном (по уровню образования, рабочему стажу и т. п.) не различаются между собой. (Ниже я объясню, каким образом мы можем выполнить это условие.) Наш статистический анализ продемонстрировал, что более белые зубы ассоциируются с 86-долларовой прибавкой к годовому доходу и что этот эффект вряд ли объясняется чистой случайностью. Это означает, что 1) мы с достаточно высокой степенью уверенности отвергли основную (нулевую) гипотезу, гласящую, что наличие у человека белых зубов никак не связано с уровнем его годового дохода; и 2) если мы проанализируем другие выборки данных, то наверняка обнаружим аналогичную связь между хорошо выглядящими зубами и повышенным уровнем дохода.

Что же из этого следует? Мы выявили статистически значимый результат, хотя для нас он практически бесполезен. Начнем с того, что прибавка в 86 долларов к годовому доходу вряд ли существенно изменит уровень жизни человека. С экономической точки зрения она вряд ли оправдывает регулярное выполнение процедур по отбеливанию зубов, поскольку такие процедуры наверняка обойдутся гораздо дороже, поэтому нам не имеет смысла рекомендовать подобные инвестиции молодым работникам. И, несколько забегая вперед, я озаботился бы также рядом серьезных методологических проблем. Например, идеальный вид зубов может ассоциироваться с другими чертами характера человека, обусловливающими более высокий уровень его доходов: то есть дело не в зубах как таковых, а в том, что люди с высоким уровнем доходов, как правило, заботятся об их состоянии. Пока же для нас важно обратить внимание на степень (величину) наблюдаемой нами связи между объясняющей переменной и интересующим нас исходом.

Значимость. Является ли наблюдаемый нами результат заблуждением, обусловленным нерепрезентативной выборкой данных, или он отражает реально существующую связь, которая, скорее всего, будет присуща всей соответствующей совокупности? Это тот же самый фундаментальный вопрос, на который мы пытаемся ответить на протяжении нескольких последних глав. Можно ли ожидать в контексте роста и веса, что мы будем наблюдать аналогичную положительную ассоциацию в других выборках, которые являются репрезентативными по отношению к данной совокупности? Чтобы ответить на этот вопрос, используем уже знакомые вам базовые инструменты статистического вывода. Наш коэффициент регрессии основывается на наблюдаемой зависимости между ростом и весом для определенной выборки данных. Если бы мы тестировали более крупную выборку, то почти наверняка выявили бы несколько иную зависимость между ростом и весом и, следовательно, другой коэффициент регрессии. Зависимость между ростом и весом, наблюдаемая в данных, полученных британским правительством (напоминаю, что они касаются государственных служащих Британии), безусловно, будет отличаться от зависимости между ростом и весом для участников исследования Americans’ Changing Lives. Однако из центральной предельной теоремы следует, что среднее значение для большой, надлежащим образом сформированной выборки, как правило, не будет существенно отклоняться от среднего значения для генеральной совокупности. Аналогично мы можем предположить, что наблюдаемая зависимость между переменными, такими как рост и вес, тоже не будет значительно разниться от выборки к выборке, если, конечно, эти выборки будут достаточно крупными и надлежащим образом сформированными из одной и той же совокупности.

Вы должны понимать это на интуитивном уровне. Весьма маловероятно (хотя в принципе возможно), что, обнаружив зависимость между каждым дополнительным дюймом роста и дополнительными 4,5 фунта

веса участников исследования Americans’ Changing Lives, мы в то же время не выявили бы никакой зависимости между ростом и весом в какой-то другой репрезентативной выборке, состоящей из 3000 взрослых американцев.

Это должно дать вам первый намек на то, как мы будем проверять, являются ли результаты нашей регрессии статистически значимыми. Для коэффициента регрессии, как и для опросов общественного мнения и других форм статистического вывода, мы можем вычислить стандартную ошибку, которая представляет собой показатель вероятного разброса, наблюдаемый нами в значениях этого коэффициента в случае, если бы мы выполнили регрессионный анализ по нескольким выборкам, сформированным из одной и той же совокупности. Если бы мы измерили рост и вес в какой-то другой выборке, состоящей из 3000 взрослых американцев, то последующий анализ мог бы показать, что каждый дополнительный дюйм роста ассоциируется с дополнительными 4,3 фунта веса. Если бы мы проделали те же самые действия в отношении еще одной выборки из 3000 взрослых американцев, то могли бы обнаружить, что каждый дополнительный дюйм роста связан с дополнительными 5,2 фунта веса. И здесь на помощь снова приходит нормальное распределение. При использовании больших выборок данных можно предположить, что полученные нами разные коэффициенты регрессии будут распределены по нормальному закону вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев. В таком предположении мы можем вычислить стандартную ошибку для коэффициента регрессии, что позволит составить представление о том, насколько большой разброс коэффициентов регрессии следует ожидать от выборки к выборке. Я не буду здесь вдаваться в подробное объяснение формулы для вычисления стандартной ошибки, поскольку для этого пришлось бы прибегнуть к множеству математических выкладок и к тому же все базовые статистические пакеты программного обеспечения вычислят ее за вас.

Однако должен предупредить, что при использовании небольшой выборки данных – например группы из 20 взрослых американцев вместо группы из более чем 3000 участников исследования Americans’ Changing Lives – нормальное распределение на помощь нам уже не придет. В частности, если мы будем то и дело выполнять регрессионный анализ в отношении разных малых выборок, то уже не сможем исходить из того, что полученные нами разные коэффициенты регрессии будут распределены по нормальному закону вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев. Вместо этого они будут распределены вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев по закону, известному как t-распределение, или распределение Стьюдента. (Вообще говоря, t-распределение характеризуется большей степенью разброса, чем нормальное распределение, и, следовательно, имеет «более толстые хвосты».) Все прочее остается неизменным; любые базовые статистические пакеты программного обеспечения без проблем справятся с дополнительной сложностью, связанной с использованием t-распределений. Поэтому более подробное объяснение t-распределения приведено в приложении к этой главе.

Пока же будем исходить из того, что имеем дело с большими выборками (и с нормальным распределением). Самое главное сейчас – понять, почему для нас так важна стандартная ошибка. Как и в случае с опросами общественного мнения и другими формами статистического вывода, мы ожидаем, что более половины наблюдаемых коэффициентов регрессии будут отстоять от истинного параметра [58] совокупности на расстояние, не превышающее одной стандартной ошибки. Примерно 95 % коэффициентов регрессии будут отстоять от истинного параметра совокупности на расстояние, не превышающее двух стандартных ошибок. И так далее. Учитывая сказанное, можно считать, что мы почти у цели, так как теперь можем выполнить небольшую проверку гипотез. (А вы и в самом деле полагали, что с проверкой гипотез покончено?) Поскольку у нас уже есть коэффициент и стандартная ошибка, мы можем проверить основную гипотезу, которая заключается в том, что между объясняющей и зависимой переменной на самом деле никакой зависимости нет (а это, в свою очередь, означает, что истинная зависимость между ними в данной совокупности равна нулю).

58

«Параметр» – это термин, обозначающий любую статистику, которая описывает ту или иную характеристику какой-либо совокупности; средний вес для всех взрослых мужчин – параметр соответствующей совокупности. То же можно сказать о среднеквадратическом отклонении. В приведенном примере истинная связь между ростом и весом для данной совокупности является параметром этой совокупности.

В нашем простом примере с ростом и весом мы можем проверить, какова вероятность обнаружить, что в выборке Americans’ Changing Lives каждый дополнительный дюйм роста ассоциируется с 4,5 дополнительных фунта веса, если на самом деле во всей совокупности зависимость между ростом и весом отсутствует. Я вычислил соответствующую регрессию, воспользовавшись одним из распространенных статистических пакетов; стандартная ошибка по коэффициенту роста составила 0,13. Это означает, что в случае многократного выполнения такого анализа (скажем, с сотней разных выборок) можно было бы ожидать, что наш наблюдаемый коэффициент регрессии будет отстоять от истинного параметра совокупности на расстояние, не превышающее двух стандартных ошибок, примерно в 95 случаях из 100.

Следовательно, это позволяет нам выразить полученные результаты двумя разными, но взаимосвязанными между собой способами. Первый – это построить 95 %-ный доверительный интервал. Мы можем утверждать, что в 95 случаях из 100 доверительный интервал (который составляет 4,5 ± 0,26) будет включать истинный параметр совокупности. Это диапазон от 4,24 до 4,76. Любой из статистических пакетов также вычислит этот интервал. Второй – отвергнуть основную гипотезу об отсутствии зависимости между ростом и весом для совокупности в целом на 95 %-ном доверительном уровне, видя, что наш 95 %-ный доверительный интервал для истинной зависимости между ростом и весом не включает нуль. Этот результат можно также выразить как статистически значимый на уровне 0,05: существует лишь 5 %-ная вероятность того, что мы ошибочно отвергли основную гипотезу.

Поделиться:
Популярные книги

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Самый лучший пионер

Смолин Павел
1. Самый лучший пионер
Фантастика:
попаданцы
альтернативная история
5.62
рейтинг книги
Самый лучший пионер

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Промышленникъ

Кулаков Алексей Иванович
3. Александр Агренев
Приключения:
исторические приключения
9.13
рейтинг книги
Промышленникъ

Законы Рода. Том 9

Flow Ascold
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2