Голая статистика. Самая интересная книга о самой скучной науке
Шрифт:
Вы объясняете, что ответ на этот вопрос зависит от того, насколько уверенной хочет быть телекомпания в правильности своего заявления – или, точнее говоря, какой риск она готова принять на себя, если оно окажется ошибочным. Вспомните: стандартная ошибка дает нам представление о том, как часто можно ожидать, что доля в выборке (экзитпол) окажется достаточно близкой к истинной доле в совокупности (результат голосования). Нам известно, что примерно в 68 % случаев мы можем ожидать, что доля в выборке – в данном случае 53 % избирателей, которые утверждают, что проголосовали за кандидата от республиканцев, – отстоит от истинного окончательного результата голосования не более чем на одну стандартную ошибку. Таким образом, вы говорите начальнику «с 68 %-ной уверенностью», что ваша выборка, которая показывает, что кандидат от республиканцев получил голоса 53 % избирателей ± 2 %, то есть между 51 и 55 %, соответствует истинному достигнутому им результату. Между тем, согласно
Группа графического дизайна бросается строить красочную трехмерную диаграмму, чтобы вы могли отобразить ее на экранах ваших телезрителей:
Представитель Республиканской партии 53 %
Представитель Демократической партии 45 %
Независимый кандидат 2 %
(Предел погрешности 2 %)
Поначалу ваш босс приходит в восторг – главным образом потому, что диаграмма представлена в трехмерном виде, насыщена яркими красками и даже может вращаться на экране вокруг вертикальной оси. Однако когда вы объясняете, что примерно в 68 случаях из 100 результаты экзитпола будут отличаться от действительных результатов выборов не более чем на одну стандартную ошибку, ваш начальник, которому уже не раз приходилось посещать курсы аутотренинга и управления негативными эмоциями, указывает на совершенно очевидную вещь: в 32 случаях из 100 результаты экзитпола будут отличаться от действительных результатов выборов более чем на одну стандартную ошибку. И что тогда?
Вы объясняете, что есть два варианта: 1) кандидат от республиканцев мог получить даже больше голосов, чем предсказывал экзитпол, тогда все равно вы назвали бы победителя правильно; 2) но существует достаточно высокая вероятность того, что кандидат от демократов набрал гораздо больше голосов, чем предсказывал экзитпол; в этом случае ваша восхитительная красочная вращающаяся трехмерная диаграмма объявит победителя неправильно.
Босс запускает чашкой с кофе в стену, из чего вы делаете вывод, что посещение курсов аутотренинга и управления негативными эмоциями не пошло ему на пользу. Между тем, начальник продолжает бушевать: «Как, черт бы вас побрал, мы можем быть уверены в правильности результата, показанного на вашей …ной диаграмме?»
Понимая кое-что в статистике, вы указываете ему, что не можете быть уверены в каком-либо результате до тех пор, пока не будут подсчитаны все голоса. И предлагаете в качестве критерия уверенности воспользоваться 95-процентным доверительным интервалом. В данном случае ваша восхитительная красочная вращающаяся 3D-диаграмма предскажет победителя неправильно в среднем лишь в 5 случаях из 100.
Начальник закуривает сигарету и пытается успокоиться. Вы решаете не напоминать ему о запрете курения на рабочем месте, несмотря на участившиеся в последнее время случаи пожаров в офисах, однако все же отваживаетесь поделиться кое-какими плохими новостями: единственный способ, позволяющий вашей телекомпании повысить уверенность в результатах экзитпола, – расширить предел погрешности, но тогда однозначно назвать победителя выборов будет невозможно. После этого вы показываете начальнику новую 3D-диаграмму:
Представитель Республиканской партии 53 %
Представитель Демократической партии 45 %
Независимый кандидат 2 %
(Предел погрешности 4 %)
Из центральной предельной теоремы вам известно, что приблизительно 95 % пропорций выборки будут отстоять от истинной пропорции доли голосов совокупности на расстоянии, не превышающем двух стандартных ошибок (в данном случае 4 %). Таким образом, если мы хотим обеспечить большую уверенность в результатах экзитпола, то нам придется умерить свои амбиции в том, что касается точности прогноза. Как следует из приведенной выше пропорции доли голосов (к сожалению, мы не можем показать здесь соответствующую красочную вращающуюся 3D-диаграмму), ваша телекомпания может, при 95 %-ном доверительном уровне, объявить о том, что кандидат от республиканцев получил 53 % голосов избирателей ± 4 %, то есть между 49 и 57 % голосов избирателей, а кандидат от демократов – 45 % ± 4 %, то есть между 41 и 49 % голосов избирателей.
Правда, теперь вы сталкиваетесь с новой проблемой. При 95 %-ном доверительном уровне вы не можете отвергнуть вероятность
Ваш начальник предлагает вам заказать пиццу и быть готовым к тому, что придется поработать вечером (или даже всю ночь). На этот раз статистические боги оказываются к вам милостивы. Вам на стол кладут данные второго экзитпола, для проведения которого использовалась выборка из 2000 избирателей. Его результаты таковы: кандидат-республиканец – 52 % голосов, кандидат-демократ – 45 % голосов, независимый кандидат – 3 % голосов. На этот раз ваш босс совершенно взбешен, поскольку эти данные показывают, что разрыв между кандидатами сократился, а это еще больше затрудняет своевременное предсказание итогов голосования. Но не нужно спешить с выводами! Вы указываете (стараясь сохранять присутствие духа), что размер второй выборки (2000) в четыре раза больше первой, которая использовалась при проведении первого экзитпола. Таким образом, стандартная ошибка существенно уменьшилась. Новая стандартная ошибка для кандидата от республиканцев равняется [0,52(0,48)/2000], что составляет 0,01.
Если вашего начальника по-прежнему устраивает 95 %-ный доверительный интервал, то вы можете объявить победителем кандидата от республиканцев. С учетом вашей новой стандартной ошибки 0,01 95 %-ные доверительные интервалы для кандидатов таковы: кандидат-республиканец: 52 ± 2, или между 50 и 54 % голосов избирателей; кандидат-демократ 45 ± 2, или между 43 и 47 % голосов избирателей. Теперь между этими двумя доверительными интервалами нет никакого взаимного перекрытия. Вы можете в прямом эфире сообщить, что на выборах победил кандидат от республиканцев; такой прогноз окажется правильным более чем в 95 случаях из 100 [52] .
52
Можно ожидать, что истинный процент голосов избирателей, отданных за кандидата от республиканцев, окажется за пределами доверительного интервала экзитпола приблизительно в 5 случаях из 100. В таких случаях истинный процент голосов избирателей, отданных за кандидата республиканцев, окажется меньше 50 % или больше 54 %. Если, однако, он получит больше 54 % голосов избирателей, ваша телекомпания не ошибется, назвав его победителем (просто его победа окажется еще более убедительной, чем вы предсказывали). Таким образом, вероятность того, что проведенный вами экзитпол заставит вас ошибочно объявить победителем кандидата-республиканца, составляет лишь 2,5 %.
Но это даже лучше. Из центральной предельной теоремы вам известно, что в 99,7 % случаев пропорция долей выборки будет отстоять от истинной пропорции долей совокупности на расстоянии, не превышающем трех стандартных ошибок. В нашем примере с выборами 99,7 %-ные доверительные интервалы для двух кандидатов таковы: кандидат от республиканцев: 52 ± 3 %, или между 49 и 55 % голосов избирателей; кандидат от демократов 45 ± 3 %, или между 42 и 48 % голосов избирателей. То есть после того как вы объявите победителем выборов кандидата-республиканца, благодаря новой выборке из 2000 избирателей останется лишь ничтожная вероятность того, что вы вместе со своим начальником будете уволены.
Вы, наверное, обратили внимание, что использование большей по объему выборки снижает стандартную ошибку. Именно за счет этого крупные общенациональные опросы позволяют получить необычайно точные результаты. В то же время выборки меньшего размера увеличивают величины стандартных ошибок и, следовательно, доверительный интервал (или «предел ошибки выборочного исследования», как принято говорить среди специалистов по проведению опросов общественного мнения). Текст, набранный мелким шрифтом в опросе The New York Times / CBS News, гласит, что предел погрешности для вопросов по поводу праймериз республиканцев составляет 5 процентных пунктов в сравнении с 3 процентными пунктами для других вопросов, включенных в опрос общественного мнения. Эти вопросы задавались лишь тем, кто сам назвал себя сторонником Республиканской партии, и тем, кто участвовал в голосованиях на закрытых собраниях ее членов, поэтому размер выборки для данной подгруппы вопросов снизился до 455 (общее количество избирателей, участвовавших в опросе, составило 1650).