Хаос и структура
Шрифт:
3. Именно, дифференцировать существенно отражающее мышление— значит получать понятие, т. е. понятие есть первая производная мышления. Дело в том, что адекватно и целостно отражающее материальную действительность мышление, взятое само по себе, так же неистощимо, так же бесконечно, так же бурлит неисчерпаемыми возможностями, как и отражаемая им материя. Иначе невозможно было бы и говорить об отражении. Однако и такое целостное отражение вещи, и такая сама вещь есть нечто слишком жизненно–насыщенное, есть нечто сложное и неанализиру–емое, даже излишнее для обыкновенного мышления, разговора и действия, ибо обыкновенное мышление, разговор и действие все же подходят к целостной и неисчерпаемой вещи с какой–нибудь одной или немногих сторон. Поэтому для реального употребления цельного мышления надо его дифференцировать, имея в виду только какое–нибудь одно независимое переменное. Тогда мы получаем не просто производную функцию, но именно т. н. частную производную. То, что в логике носит название понятия, есть именно эта частная производная от цельного отражения цельной материальной вещи по одному из тех независимых переменных, которые составляют данную вещь.
В самом деле, что такое, напр.,
Конечно, и всякий, незнакомый с математическим анализом, может, употребляя данный термин в расплывчатом, обывательском значении, тоже говорить, что понятие получается из общего мыслительного процесса путем дифференцирования. Однако у обывателя это—ничего не говорящая общая фраза. Математический же анализ учит нас тут точности и строгости. Дифференцировать здесь означает: 1) взять вещь (воду) в ее непрерывном изменении, в ее бесконечно–малых нарастаниях; ) в том же виде взять и соответствующее ей мыслительное отображение; 3) взять отношение между тем и другим, которое, очевидно, тоже сплошно и непрерывно меняется (раз меняется и сама вода, и мысль о ней); 4) это отношение рассматривать, не беря всю вещь целиком, а только некоторый один из ее моментов; и, наконец, 5) отношение это, непрерывно становящееся, взять как ставшее, как завершенное, как предел. И вот этот–то предел и есть в данном случае химическое понятие воды как именно Н20. Имеет ли что–нибудь общее это логически развитое дифференцирование с тем смутным и нелепым пониманием дифференцирования, которое мы находили у обывателя? Если даже и не выдвигать все указанные признаки точного понятия дифференцирования, то во всяком случае необходимо помнить, что в логике понятие есть обязательно предел бесконечно приближающихся к нему чувственных представлений, которые, оставаясь чувственными представлениями, никогда не могут достигнуть понятия, но могут приближаться к нему с любой точностью. И поэтому чувственное представление вещи, в конце концов, тоже есть определенная функция самой же вещи. Но чтобы сохранить в целости всю логическую специфику чувственного представления, надо его понять как только некое приближение к пределу и надо эту предельную величину интегрировать, чтобы отсюда уже прямо перейти к самой вещи, интегрально данной в существенно отражающем мышлении.
Тут, однако, мы переходим к чрезвычайно важным категориям дифференциала и интеграла в логике, которым должно предшествовать развитое учение о логической сущности производной функции.
8. ПРОИЗВОДНАЯ В ЛОГИКЕ
Дадим теперь логический анализ понятия производной и тем самым изучим, что такое производная в сфере логического мышления.
1. В чем заключается дифференцирование, когда мы идем от первообразной функции к ее производной — в области мышления? Здесь мы идем от цельного и полного отражения, или смысла, вещи, как оно есть, к одному из возможных ее понятий. Это «дифференцированное» понятие, конечно, содержится уже в цельном й полном отражении вещи. Однако оно содержится здесь до перехода этого отражения в его инобытие: у\ данный сам по себе, без всякого y есть то, что еще не перешло ни в какое свое становление, ни в какое свое инобытие. Конечно, это становление будет в полной зависимости от того, что такое сам у. В этом у уже заложены его инобытийные судьбы; здесь они уже даны в своем простейшем, в своем зародышевом и, так сказать, «недифференцированном» состоянии. То, что выделено и формулировано в виде понятия, здесь находится в слиянии с другими элементами данного цельного отражения, из которых—путем аналогичного процесса — тоже могут быть получены соответствующие понятия. Однако даже и такое представление о производной и интеграле все еще не может считаться вполне конкретным. В математическом анализе эти категории гораздо конкретнее и богаче, и мы в предложенной концепции все еще не исчерпали их до конца.
2. Прежде всего надо устранить одно недоразумение, возникающее здесь в связи с традиционной логикой. Если исходить из той концепции понятия, которая фигурирует обычно, то не может быть никакого разговора о понятии как о чем–то определяемом через производную.
Производная есть функция, т. е. некоторая совокупность действий над некоторым аргументом. Понятие же в логике дается как самостоятельная, ни от чего не зависящая величина.
Далее, производная есть не просто функция, но функция, определенным образом полученная из другой функции. Никакого намека на это в традиционном учении о понятии совершенно не имеется. В производной все составляющие ее элементы строго связаны между собою определенным порядком действий. Если у = ах2 + bx +
Если мы интерпретируем понятие как определяемое через производную, то, очевидно, вовсе не для того, чтобы обосновать школьную механистическую логику. Эта интерпретация вызвана стремлением именно выйти за пределы школьной логики и понять эту последнюю не как абсолютную и единственно данную, но как условную и относительную, как одно из возможных, и притом достаточно грубых, приближений к истинной логике.
Прежде всего, понятие для нас есть именно функция. Оно не абсолютно; оно не есть то, перед чем надо падать ниц и молиться; оно само есть только результат определенной зависимости от чего–то другого, что может с гораздо большим правом считаться «независимым переменным», а именно результат зависимости от изменений материи. Меняется материя—меняется понятие. Не меняется материя—не меняется и понятие. Можем ли мы при этих условиях понимать понятие не как функцию? Думается, на это нет у нас ровно никакого права. Хотя понятие и не есть только функция, но что оно в первую голову есть именно функция, в этом сомневаться не приходится. Итак, понятие есть функция вещи. Это одно уже сразу ставит понятие в близкую связь с производной, хотя одним этим такая связь, конечно, далеко еще не исчерпывается.
Далее, есть ли понятие просто функция вещи и больше ничего? Нет, так сказать нельзя. Она есть в конце концов функция вещи. Но одного этого сказать было бы очень мало для характеристики существа понятия. Это было бы весьма абстрактно. То понятие, о котором говорит логика, есть понятие как совокупность признаков. Уже одно это рисует нам природу понятия не как просто полученную из вещей в непосредственном виде, но как известным образом переработанную, ибо признаки понятия вещи отнюдь еще не есть и свойства самой вещи. Если карандаш есть орудие для письма при помощи графита, то, напр., окраска карандаша, его цилиндрическая или граненая форма, его размеры и вообще реальные качества карандаша как вещи вовсе не входят в понятие карандаша, ибо для этого понятия нужны только те признаки, которые были сейчас перечислены при определении карандаша. Значит, понятие как совокупность признаков вовсе не есть просто вещь как совокупность свойств и не находится от них в простой и непосредственной зависимости. Но тогда—откуда же нам получить это понятие как совокупность признаков?
3. Ближайшее рассмотрение показывает, что всякое понятие как совокупность признаков есть, прежде всего, нечто цельное и неделимое, подобно тому как и мяч, которым играют дети, хотя и состоит из множества разных отдельных свойств, все же есть нечто одно и неделимое; и когда дети бросают этот мяч один от другого, они оперируют им как раз в виде некоей неделимой целости. Эта цельная неделимость понятия выступает постоянно в нашем реальном мышлении и языке, в нашем разговоре и письме, потому что, когда мы, напр., быстро произносим или пишем ряд фраз, то мы вовсе не думаем об отдельных признаках употребляемых нами понятий, а пользуемся этими понятиями, как будто бы они и внутри себя, и в своем взаимоотношении были совершенно нерасчлененными. Совершенно ясно, что разделение понятия на признаки требует того, что именно тут разделяется. Ясно то, что если в понятии этой неделимой цельности нет, то признаки могут только раздробить его на взаимно дискретные части и таким образом превратить цельное понятие во столько разных и взаимно изолированных понятий, сколько в нем мыслится признаков. Следовательно, понятие как совокупность признаков есть только развитие и расчленение понятия в первичном смысле, понятия как такового, понятия как смысловой индивидуальности, не сводящейся ни на отдельные признаки, ни на их совокупность.
А это значит вот что. Развитое понятие есть не только функция вещи, но и функция какой–то еще другой функции вещи, а именно той функции, которая есть прямое и существенное отражение вещи в том виде, как эта вещь реально существует в своем цельном и неделимом виде, несмотря на всю свойственную ей .полноту и бесконечность, неистощимость самопроявления. Здесь мы еще ближе подходим к производной, которая есть тоже функция от функции; как видно, мы здесь еще не доходим до полной конкретности, ибо тут еще не поставлен вопрос, какого рода происхождение производной от первообразной. Есть ли это то же самое, что и происхождение понятия как развитой совокупности признаков из понятия как неделимой цельности, и как связана производная с этим происхождением? Сейчас мы перейдем к решению этого вопроса. Но пока запомним получившийся у нас результат.
1) Первичное и существенное отражение вещи, как бы оно ни было расчленено в себе, выступает сначала просто как нечто единое, цельное и неделимое, как просто «недифференцированное» понимание вещи. 2) Это понимание, будучи сопоставляемым с изменениями вещи в своем цельном, законченном виде, начинает расчленяться, дробиться, переходить в инобытие. 3) Однако поскольку процесс этот происходит все же в недрах отражения, т. е. в недрах понимания, то и результат этого дробления есть тоже смысловой результат, т. е. он соотносится сам с собой не вещественно–причинно, но, так сказать, «[пони ]мательно». И вместе с тем дробление возникло как функция вещи. Возникает вопрос: что же это за дробление вещи, которое в то же время есть материальная функция? Что это за деление понимания вещи, которое есть в то же время и вещественное его дробление?