Чтение онлайн

на главную - закладки

Жанры

Хроники невозможного. Фактор "Х" для русского прорыва в будущее
Шрифт:

За вырученные деньги он построил в колонии автомат, который выполнял почти все операции по изготовлению игрушечной мебели, которая, говорят, даже поставлялась в Германию .

Однако увлечение камнями осталось. Что, впрочем, далеко не случайно: ведь, по сути, искусственные камни - одно из самых перспективных направлений в создании конструкционных материалов будущего. Да-да, вместе, например, с композитами или алюминием, легированным углеродными нанотрубками. Мы ведь не зря в начале книги, заглядывая в будущее уже Седьмого технологического уклада, сказали о прозрачной стали. Пример-то - не очень и сказочный. Ибо прозрачная, жароупорная броня существует и сегодня. Как искусственный драгоценный камень.

В это,

наверное, трудно поверить тем, для кого понятие "высокие технологии" сводится лишь к кремнию и написанию программ, к айпэдам и айфонам. Но специалисты давно говорят о новом "каменном веке". Еще в 1983 году корпорация "Мацусита Дэнки" показывала целиком керамический автомобильный мотор. Позже Владимир Попов резал своей керамикой стекло. Ну, а для вящего эффекта отметим, что "каменные" детали есть, например, в зенитных ракетах с тепловыми головками самонаведения.

Но как ставить на ракеты редкий, драгоценный камень? Пока этого не делается, потому что природная шпинель все-таки стоит слишком много. Пока "головы" ракет переносных зенитных комплексов типа американского "Стингера" или советской "Иглы" делались из фторида магния, MgF2, который пропускает лучи в тепловом и ультрафиолетовом диапазоне (длина волны от О, 12 до 8 микрометров, то есть - от 120 до 8000 нанометров).

ДЛЯ СПРАВКИ: Диапазон ультрафиолетового изучения 10-380 нанометров.

Диапазон инфракрасного изучения - от 740 нанометров до 1 2 миллионов нанометРОВ.

Но в процессе производства обтекателей из фторида магния 87 0 0 продукции идет в брак. К тому же, РФ лишилась своего производства прозрачных обтекателей - в ходе "реформ" и приватизации специальный завод в Никольском (Пензенская область) оказался разгромленным. Его прессы давно бездействуют.

Да и эти 12 процентов, которыми оснащали наши "Иглы", не решали стоящую перед ракетой задачу. Дело в том, что самолеты быстро научились уводить ракету в сторону с помощью отстреливаемых, ярко горящих магниевых ловушек. Кроме этого, обтекатели из фтористого магния имеют еще один очень существенный недостаток - при разогреве свыше 200 градусов керамика слепнет. MgF2 сильно подвержен эрозии. А значит, он не подходит для боевых ракет с гиперзвуковыми скоростями. Ведь их оболочка из-за трения в воздухе раскаляется так же, как и "лоб" (или днище) космического корабля, врывающегося в плотные слои атмосферы. Передние кромки крыльев и лоб летательного аппарата на скорости 5 махов (скоростей звука) разогреваются почти до 1200 градусов. Естественно, что ракеты с "глазом" из фторида магния, плавящегося при температуре в 1263 градуса, просто теряют прозрачность. А скорость для ракет воздушной войны фактор критический. Иначе они не смогут поражать ни баллистические ракеты, ни перспективные гиперзвуковые самолеты, ни сверхзвуковые высотные цели.

Потому очень нужно было сделать рывок - создать обтекатели ракет из искусственной шпинели. Сверхпрочной и жароупорной. Шпинель, конечно, более "подслеповата", чем фторид магния, но зато она намного прочнее, ее температура плавления почти вдвое выше.

Американцы занялись этой проблемой с 1964 года. Такие известные ученые, как Navias (1961), Gatti и None (1979), Sellers and Roy 1973), Branton (1974), Hing (1976), Gentilman (1981), Maguire and Gentilman (1982), Nakahasi (1985), Shibata (1989), Boch (1991), Roy and Hassert (1991) считали, что физические и оптические свойства шпинели делают ее лучшим (среди всех известных материалов) кандидатом для использования в роли прозрачной брони для окон и обтекателей, в оптоэлектронных будущих системах наведения ракет и самолетов. В шестидесятые и семидесятые годы синтез шпинели исследовали многие солидные организации. То были и "Avco Corporation", и "General Electric Space Division", и North Carolina State University, Rutgers University, и знаменитый Стэнфорд (Stanford University),

и "Coors Porcelain Сотрапу". Ну, а в наши дни в США уже предприняты усилия по возрождению исследований и коммерческого производства шпинели. Военная Научно-исследовательская лаборатория США (Army Research Laboratory - ARL) и фирма "ТА&Т" (Technology Assessment & Transfer Inc) из города Аннаполис, штат Мериленд подписали соглашение о совместном исследовании "Разработка и оценка использования в качестве многомодового элемента прозрачной шпинели"

С 1972 года такие же работы пошли и в СССР в Государственном оптическом институте (ГОИ). Вернее, ГОИ выступил головной организацией, а вообще в программе задействовали шестнадцать научно-исследовательских институтов - кто-то работал по синтезу порошков, кто-то - по созданию способов давления и т. д. Но, забегая вперед, скажем, что работа успехом не увенчалась. К сожалению, в СССР шпинель с ожидаемыми свойствами создана не была.

Однако военным делом применение искусственной шпинели не исчерпывается. Шпинель нужна и для медицины будущего.

Почему, скажем, не пошел в хирургии сапфировый лазер? Почему не получился полноценныЙ лазерный скальпель? Потому, что сапфир разрушается, не выдерживает высокой нагрузки. Из-за этого лазерные скальпели используют только в микрохирургии, в операциях с кровеносными сосудами. Для глубоких разрезов скальпель на рубиновом лазере не годится: рабочее тело может просто взорваться. Да и делать такие "лучевые скальпели" очень трудно: едва перекосишь оптическую ось сапфира - и все изделие идет насмарку.

Однако немецкий ученый Аккерман предложил: делать лазерные скальпели с использованием шпинели. Тогда они смогут выдерживать нагрузку почти в сотню раз большую. Осталось дело за малым: создать производство искусственной шпинели нужных качеств.

Но, что называется - легко сказать. Американцы, помучившись с этим делом с 1964 года, его потом надолго забросили. Методы горячего прессования или спекания шпинели оказались не настолько эффективными, чтобы получать изделия нужного качества и размера. Растили монокристалл, а он выходил не того качества. Шпинель крайне тугоплавка - она "тает" при температуре 2135 градусов. Для сравнения: жар для плавления стали - 1450- 1520 о с.

Но Мастер не был бы Мастером, если бы не занялся бы и этой каверзной задачей двинувшись своим путем. Он решил, что незачем заниматься монокристаллом шпинели когда можно делать шпинель поликристаллическую. Но зато какую ! Впрочем, не будем забегать вперед, читатель.

РОЖДЕНИЕ "КАМЕННОГО" ПРЫВА.

Только-только выйдя на свободу в 1989 году, Виктор Иванович решил заняться искусственными драгоценными и полудрагоценными камнями. Изначально - из чисто ювелирных соображений.

В то время страна неудержимо и страшно впадала в агонию. Экономика шла вразнос. И вот после гибели Советского Союза Мастер покупает первые установки для производства бесцветных сапфиров - лейкосапфиров. Аппараты "Омега" для выращивания монокристаллов лейкосапфира, кстати, и ныне производит Луганск (http ://omega-crystals. сот/т/). Делали их с прототипа: печей "Гном", разработанных в ГОИ. В свою очередь, выяснилось, что это были не очень удачные копии старых иностранных агрегатов, работающих на технологии Киропулоса.

Виктор Петрик действительно выкупил те установки, что были произведены по заказу Минобороны СССР, но после трагедии 1991 года оказались неоплаченными военными. Тогда десять аппаратов в 1992-м приобрел Мастер, и столько же - директор Института геологоразведки Виктор Рябков. Виктор Иванович долго мешкал, но потом поставил свои машины на заводе "Большевик". Но потом оба они свои "омеги" продали: они были уже неинтересны. Почему? Технология выращивания лейкосапфиров была уже давно устаревшей. Да и кристаллы на них получались плохого качества.

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР