Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №10
Шрифт:

Слияния возможны и при столкновении двух кластеров, что приводит к их резкому росту. Этот процесс роста будет продолжаться до тех пор, пока не сравняется объемная и поверхностная энергия кластера, что в свою очередь сильно зависит от внешних условий. К внешним условиям, в данном случае, можно отнести например, характеристики электромагнитного и электрических полей, температуру. С помощью электромагнитного и электрических полей можно управлять процессом образования новых кластеров, а температура влияет на их устойчивость. Известно, что водородная связь относительно непрочная, но в простейших кольцевых структурах кластеров, из-за их симметрии, происходит упрочнение водородных связей, что позволяет простейшим кластерам не распадаться вплоть до температур близких к температуре кипения. Однако в общем случае, связи, которые устанавливаются между простейшими кластерами, не будут симметричны, и не будет происходить их упрочнения, поэтому сложные структуры

могут существовать только при относительно невысоких температурах порядка комнатной. При более высоких температурах тепловые флуктуации будут разрушать водородные связи сложных надмолекулярных образований, оставляя только простейшие кластеры. При понижении температуры до нулевой вода будет стремиться перейти к самому низкому по энергии состоянию, соответствующему идеальной кристаллической решетке льда. Многие проведенные эксперименты говорят о том, что сложные большие кластеры величиной более 100А могут быть обнаружены только в очень узком интервале температур, близких к комнатным. Изучению подобных объемных структур в настоящее время уделяется большое внимание, в частности показано, что они могут образовываться в магнитных полях, реагируют на различного вида излучения и обладают эффектом «памяти».

2. Возможность проводимости в воде

Рассмотрим самую примитивную и распространенную модель кластера — цепочечную (Рис. 5). С точки зрения структурной организации она минимально информативна, но у нее имеются некоторые особенности, позволяющие говорить о возможности новых интересных применений воды с кластерами такого типа.

Представим такую ситуацию, что каким-то образом удалось с левого конца цепочки удалить с молекулярной орбитали один из ионов водорода. На самой левой молекуле воды тогда останется одна ненасыщенная связывающая орбиталь. Если при этом удаленный ион водорода заблокировать таким образом, что с ним может образовываться только водородная связь, то одна из водородных связей с атомом соседней молекулы станет молекулярной (рис 6а– 6б). Это произойдет потому, что атому кислорода крайне невыгодно иметь три разрыхляющих орбитали, и одна из них перейдет в связывающую, на которой и будет находиться молекулярная связь.

На рисунке 6б мы видим, что у второго атома кислорода три водородных связи, как до этого было у первого атома. В этом случае у второго атома кислорода имеется возможность образовать связь с водородом как левой, так и правой соседней молекулы. Если связь образуется с атомом левой молекулы, то мы придем к случаю, показанному на рисунке 6а, и дальнейшая компенсация невозможна из-за блокировки удаленного иона водорода. Получается, что единственная возможность компенсации — образование связи с атомом правой соседней молекулы. Этот процесс повторится для всех молекул в цепочке, пока не дойдет до крайней правой (рис. 6д).

В итоге процесса показанного на рисунках 6а– 6д во всей цепочке перейдет перестройка, которая приведет к тому, что на крайнем правом атоме кислорода останется один нескомпенсированный электрон. Этот электрон вместе с блокированным ионом водорода будет создавать разность потенциалов. Если такую структуру подключить к электрической цепи, то с кластера в цепь уйдет носитель заряда (при соответствующей перестройке крайнего правого атома кислорода). Стоит отметить, что во время описанного процесса по цепочке при ее перестройке справа налево передвигалась связь водорода и кислорода, и в это же время слева направо передвигался нескомпенсированный заряд электрона.

Сложность в создании такого механизма передачи заряда состоит, во-первых, в создании в воде кластеров в виде цепочек, а во-вторых, в проблеме блокировки и фиксации крайнего иона водорода. Если удаленный ион водорода не фиксировать, то в цепочке может пойти обратная реакция релаксации и кластер вернется в первоначальное состояние.

При более подробном рассмотрении видно, что перемещается не электрон, а подвижная водородная связь. Выражаясь на языке твердого тела, на рисунке 6а создается дефект, который впоследствии перемещается по цепочке с ее дальнейшей релаксацией. Если обратить внимание на рисунок 6д, то видно, что на правом краю цепочки получился такой же дефект, что был на левом конце цепочки рисунка 6а. Очевидно, что иметь такой дефект крайней правой (да и любой

другой) молекуле воды крайне неудобно, из-за этого и началась перестройка, поэтому электрон с такой цепочки будет отдаваться во внешнюю среду. Как писалось раньше, при подключении такого кластера молекул воды к электрической цепи, мы будем получать свободный носитель в этой цепи.

В описанном выше процессе существует много тонкостей. Разберем подробнее изменения происходящее в цепочке. Видно, что при каждом переходе водородной связи происходит перестройка молекул воды. Если на рисунке 6а все атомы водорода были ориентированы в одну сторону, то к рисунку 6д их ориентация полностью меняется. В действительности такая перестановка атомов водорода будет, скорее всего, сопровождаться лишь поворотом молекулы и небольшим изменением угла между связями. По энергии оба состояния почти одинаковы, однако между ними существует энергетических барьер. Для преодоления этого барьера должно быть достаточно энергии первоначальной деформации крайней левой молекулы, иначе реакция просто не пойдет.

Второе изменение цепочки будет связано с уходом электрона с крайнего правого атома на рисунке 6д. Очевидно, что после ухода электрона связи крайней правой молекулы станут нескомпенсированными, и там, скорее всего, произойдет перестройка от эр-гибридизированного состояния к более простому. Однако неизвестно, будет ли конечное состояние энергетически более выгодно. Из всего выше сказанного следует вывод, что первоначальной энергии деформации цепочки ионом водорода должно хватить на изменение ориентации молекул воды и на перестройку крайней правой молекулы, с которой уйдет некомпенсированный электрон. Даже если это условие будет выполнено, во время всей реакции должна поддерживаться водородная связь с ионом водорода на левом конце, и она ни в коем случае не должна переходить в молекулярную. Данная проблема может быть решена различными способами, например, ион водорода можно заменить ионом щелочного металла, который легче контролировать. Еще одним решением было бы создание специальной среды на одном (левом) краю ленточного кластера, где атомы водорода ионизировались бы, а потом вступали бы в реакцию с кластером.

Стоит отметить тот факт, что впечатление, которое может сложиться, будто на правом конце цепочки генерируется отрицательный заряд неверно. Первоначально заряд создался на левом конце цепочки, а только потом передался на правый. Скорее всего затраты на первоначальное создание заряда превысят выигрыш в энергии от его получения на противоположном конце кластера. Вероятно, что создание генераторов электронов на кластерах воды невыгодно. С другой стороны, сгенерированный заряд передается без потерь энергии в цепочке, надо только создать избыточную энергию деформации на одном краю кластера, достаточную для инициализации процесса. С этой точки зрения, затраченная энергия будет расходоваться намного эффективней, чем при передаче заряда по обыкновенным металлическим проводам, особенно на большие расстояния.

Проведем аналогию между проводимостью в металлах и проводимостью водных кластеров. Во-первых следует сразу отметить, что описанный эффект не относится к эффекту сверхпроводимости. Сверхпроводимость — это коллективный эффект, свойственный зарядам с целым спином, сопровождающийся Бозе-конденсацией. В нашем случае передается только один электрон, с полуцелым спином, поэтому ни о какой конденсации не может быть и речи. С другой стороны эффект идеальной проводимости при температуре абсолютного нуля намного ближе к описываемым здесь процессам. При идеальной проводимости носителями заряда являются простые электроны, которые не рассеиваются ни на тепловых колебаниях решетки, ни на примесях, из-за чего сопротивление металла становится равным нулю. В нашем случае носителем заряда тоже является электрон, который переносится в водном кластере. Кластер образовался так, что в нем естественным образом нет никаких примесей. Рассеяние на тепловых колебаниях не происходит потому, что двигается не свободный электрон в решетке, а перестраивается сама «решетка» кластера — двигается водородная связь. В металле создается разность потенциалов, а в нашем случае деформация кластера тоже является методом создания потенциальной энергии.

Отличительной чертой является то, что по одной цепочки может передаваться только один электрон, но с другой стороны этот процесс происходит при комнатной температуре. Именно возможность передачи электрического тока без сопротивления при комнатной температуре оправдывает затраты энергии, которые могут возникнуть при выполнении данной задачи.

Теперь обратим внимание на одну из основных проблем — создание стабильных водных ленточных кластеров. Создать сами ленточные кластеры можно с помощью взаимодействия воды с электромагнитным и электрическим полями. Если магнитное поле в основном применяется для создания круговых кластеров (рис. 3), то электрическое поле может быть применено для создания протяженных цепочек ленточных кластеров воды.

Поделиться:
Популярные книги

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Темный охотник 6

Розальев Андрей
6. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный охотник 6

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион