Интернет-журнал "Домашняя лаборатория", 2007 №2
Шрифт:
Считывание информации основано на магнитооптическом эффекте Керра. Суть эффекта заключается в том, что при отражении от намагниченной пленки плоскость поляризации светового луча поворачивается. При использовании в оптическом тракте поляриметра это приводит к модуляции яркости отраженного лазерного луча, что позволяет быстро считывать информацию. Понятно, что размер области считывания тоже определяется длиной волны света.
Очевидный путь повышения плотности записи — уменьшение рабочей длины волны лазера. И интенсивные работы в этом направлении ведутся. Сейчас разрабатываются МО системы, работающие на свете с длиной волны порядка 500
Однако основной прорыв в проблеме увеличения плотности записи МО носителей произошел в совершенно другом направлении. Инженеры лаборатории Белл (AT&T), использовав оптику ближней зоны, получили рекордную плотность записи. Они сумели записать и прочитать на Pt/Co носитель информацию с плотностью 45 гигабит на кв. дюйм (это 7 гигабит/см2 = 0,87 гигабайта/см2)!!!
При такой плотности записи на 3-дюймовую МО дискету поместится примерно 32 гигабайта! Суть метода в следующем: свет от 780 нм ПП лазера вводится в световод, который заканчивается зеркальным конусом. Минимальный поперечный размер световода по которому свет еще может распространятся примерно половина длины волны. От более узкого световода свет отражается обратно, а в самом волноводе затухает экспоненциально на характерной длине соответствующей поперечнику световода. Тем не менее, в конической области размер световода уменьшается примерно до 1/10 длины волны. При этом основная часть света отражается назад, но примерно 1/1000 проходит через отверстие в вершине конуса и попадает на феррослой. Оказывается, что ПП лазер мощностью 10 мВт тем не менее обеспечивает запись сигнала (разогрев МО покрытия выше точки Кюри), а для считывания информации достаточно гораздо меньшей мощности. Для того, чтобы свет, проникающий через конус, не рассеивался, отверстие в вершине конуса должно находиться на расстоянии от феррослоя не далее десятка нанометров!
Вообще, следует осознавать, что у Вас на столе в вашей ЭВМ имеется устройство (МО или винчестерский диск с поперечной записью), в котором осуществляется позиционирование считывающей/записывающей системы с точностью порядка 1/10 микрона! И все это — несмотря на вибрации стола и тряску!
Дальнейший резерв увеличения плотности записи в уменьшении рабочей длины волны ПП лазера. Это может дать еще, примерно, 3–4 раза.
Балдин Е.М., Воробьев П.В.
* * *
Современная технология изготовления компакт-дисков допускает размещение на них информации с плотностью записи не более 160 Мбит/см2. Ведущие компании мира интенсивно работают над поиском новых технологических решений, направленных на создание носителей с качественно более высокими показателями. Компания "ИБМ" недавно провела успешные испытания диска, на котором информация размещалась с плотностью 7,2 Гбит/см2. Запись и считывание осуществлялись с помощью электронного пучка, а само устройство во многом напоминало электронный микроскоп.
Еще более впечатляют результаты работы П.Краусса и С.Чу (P.Krauss, S.Chou; Университет штата Миннесота, США), сумевших разместить на 1 см2 64 Гбит! Успех последовал после применения оригинального метода нанолитографии, разработанного в этом университете. Авторы рекламируют свой метод, как достаточно простой, дешевый и производительный. Печать дисков может производиться по готовой матрице с помощью, так называемой, молдинг-технологии, которая уже стала стандартной. На поверхности демонстрационного диска элементы записи размером 10 нм разнесены на расстояния 40 нм.
В отличие от разработки "ИБМ" коммерческое освоение этих дисков пока сдерживается, поскольку здесь еще не найден эффективный способ считывания информации. По мнению Чу, реализовать считывание можно устройством, конструктивно похожим на профилометр, но работающим в режиме свободных колебаний наконечника. Тончайшая кремниевая игла движется вдоль поверхности диска на очень малом расстоянии от него. Имея высокую добротность, игла колеблется на частоте собственного механического резонанса. Однако взаимодействие с поверхностью диска вызывает вариации этой частоты, что фиксируется электронной схемой и позволяет различать элементы записи.
Измерение микропрофиля поверхности, а в более общем случае — распределения величин, характеризующих физические (и химические) свойства поверхности, восходит к туннельному микроскопу. Затем были созданы атомно-силовой и магнитно-силовой микроскопы.
Вообще, разработчики компакт-дисков полагают, что ближайшие новые образцы будут иметь диаметр всего 2 см, причем если на современном диске умещается лишь 10-минутный видеофильм среднего качества, то на этих маленьких гигантах — 5-часовой, высококачественный!
Источник: «Природа» № 5, 1999.
• ВОПРОС № 91: Известно, что существует солнечный ветер. Луна вращается вокруг Земли по орбите. Почему Луну не "сдует" с орбиты?
ОТВЕТ: Как известно, концентрация частиц в солнечном ветре порядка 4 см3 и скорость 300 км/сек. Максимальная скорость может несколько превосходить 1000 км/сек. Ветер представляет собой сверхзвуковой поток газа. Индукция магнитного поля солнечного ветра составляет 5•10– 9 Тл. (Данные взяты из книги "Физика космоса", М., Советская энциклопедия, 1986, стр.636).
Обычное газодинамическое описание теряет смысл, когда средняя длина свободного пробега молекул в газе становится порядка размера тела, которое этот газ обтекает. Это связано с тем, что закон дисперсии звуковых волн резко меняется, когда длина волны сравнивается с длиной свободного пробега (вообще, в этой области понятие звуковой волны теряет смысл). Но в определенном смысле газ узнает о препятствии (и организует тот или иной режим его обтекания) именно благодаря тому, что в газе могут распространяться возмущения давления — звуковые волны. Можно провести аналогию с электростатикой и сказать, что статическое поле давления вокруг тела, обтекаемого газовым потоком, аналогично кулоновскому полю виртуальных фотонов в случае тела, помещенного в электрическое поле.
В нашем случае нарушено сразу два условия применимости газодинамического приближения: во-первых, длина свободного пробега на много порядков превосходит размер Луны, поэтому взаимодействие потока с Луной надо считать ньютоновым; во-вторых, поток сверхзвуковой, и обтекание ни в каком случае не может быть ламинарным (ударные волны, скачки и все премудрости сверхзвуковой газодинамики). Правда, для немагнитной Луны говорить о сверхзвуковом обтекании бессмысленно, т. к. взаимодействие ньютоново.