Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:
Закон всех времён,
Успешно описывающий с двух сторон
Не только протон
И электрон,
Но также нейтрон,
Фотон,
Позитрон,
Фонон,
Магнон,
Экситон,
Полярон,
Бетатрон,
Синхротрон,
Фазотрон,
Циклон,
Цейлон,
Нейлон,
Перлон,
Одеколон,
Декамерон
И, несомненно, каждый нейрон
Мозга, которым изобретён
Тот замечательный беватрон,
В котором ускорился тот протон,
Который в ударе родил пи-мезон,
Который, распавшись, дал мю-мезон,
Который распался на электрон,
Который стремглав облетает протон,
Который в центр помещён
Атома,
который также построил Нильс Бор[216]
— Ну, кажется, мы на пороге великого открытия.
* * *
Бор с женой и молодым голландским физиком Казимиром возвращались поздним вечером из гостей. Казимир был завзятым альпинистом и с увлечением рассказывал о скалолазании, а затем предложил продемонстрировать своё мастерство, избрав для этого стену дома, мимо которого вся компания в тот момент проходила. Когда он, цепляясь за выступы стены, поднялся уже выше второго этажа, за ним, раззадорившись, двинулся и Бор. Маргарита Бор с тревогой наблюдала за ними с низу. В это время послышались свистки и к дому подбежало несколько полицейских. Здание оказалось отделением банка.
* * *
Посетив Гёттинген, Бор пригласил двадцатипятилетнего Гейзенберга на работу в Копенгаген. На следующий день во время обеда в честь Бора к нему подошли два полицейских и, предъявив обвинение «в похищении несовершеннолетних», арестовали его. Это были переодетые студенты университета.
Ключ к системе ключей
(Длинное письмо в редакцию)
Ранеё было высказано мнение, что система дверных ключей в нашем институте сложнее, чем теория поля. Это явное извращение фактов, и чтобы его опровергнуть, в настоящем сообщении мы излагаем упрощённую теоретическую схему, на основе которой создавалась эта система.
Начнём с определений.
Ключ состоит из стержня, на котором укреплены штифты.
Замок состоит из щели с отверстиями, расположенными соответственно позициям штифтов на стержне ключа. Кроме того, в замке имеется система рычажков, находящихся позади отверстий (см. рисунок).
Введём теперь следующие три аксиомы:
1. Штифты поворачивают рычажки; для того чтобы замок открылся, все рычажки в замке должны быть повёрнуты.
2. Если в данной позиции нет штифта, отверстия или рычажка, мы будем говорить в дальнейшем о наличии в данной позиции антиштифта, антиотверстия или антирычажка соответственно.
3. Ни в одном замке нет рычажков за антиотверстиями, ибо такой замок нельзя было бы открыть.
Пусть штифты, отверстия и рычажки описываются значением 1 переменных аi, bi и сi соответственно. Индекс i — номер позиции. Антиштифты, антиотверстия и антирычажки соответствуют значению 0 тех же переменных. Определим теперь матричное умножение следующим способом:
где символическое произведение аЬс = а, если одновременно с =< Ь и а >= с, в противном случае аЬс = 1 — а. Отсюда следует, что если (a1, a2, …, ak) есть собственный вектор оператора
то ключ может отпереть замок.
Используя этот формализм, легко найти полное число ключей, которые открывают данный замок (Ь/с). Оно равно а число замков, которые могут быть открыты данным ключом (а), равно
При получении этих выражений учитывался тот факт, что замок (0/0) есть тривиальный антизамок. В уравнениях (2) и (3) к есть сумма коэффициентов Клебша-Гордана, равная единице.
Развитый выше формализм позволил решить следующую задачу. Пусть некто хочет пройти из некоторой комнаты А через несколько дверей в произвольную комнату В. Число ключей, необходимое для этого, максимизировалось при произвольном выборе комнат А и В (Проблема минимизации не решалась, поскольку её решение тривиально — одинаковые замки.) Затем сотрудники института были разбиты на ряд подгрупп, и система ключей строилась таким образом, чтобы одновременно выполнялись два условия:
1) ни одна подгруппа не в состоянии открыть все те замки, которые могут быть открыты любой другой подгруппой;
2) трансформационные свойства групп соответствуют возможности одалживания ключей.
Создатели системы ключей надеялись, что она является единственно возможной и полной, и до известной степени это справедливо. Однако оказалось, что ключи, которые не должны были бы открывать некоторые двери, открывают их, если их вставлять в замок не до конца. Например, ключ (11111) может открыть замок (10000/11111) в n = 5 различных положениях. Число n было названо странностью системы ключ — замок. Экспериментальными исследованиями было найдено, что наша система ключей является весьма странной. Однако этот недостаток можно исправить, если потребовать для последней позиции соблюдения равенств аk = bk = сk = 1. Будем надеяться, что при ближайшем пересмотре системы ключей в неё будет внесено это исправление.
На отмычки настоящее исследование не распространяется.
Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.
* * *
Нильс Бор любил ходить в кино, причём из всех жанров признавал только один — ковбойские вестерны. Когда Бор по вечерам начинал жаловаться на усталость и рассеянность и говорил, что «надо что-то предпринять», все его ученики знали, что лучший способ развлечь профессора — сводить его на что-нибудь вроде «Одинокого всадника» или «Схватки в заброшенном ранчо». После одного из таких просмотров, когда по дороге домой все подсмеивались над непременной и избитой ситуацией — герой всегда хватается за револьвер последним, но успевает выстрелить первым, — Бор неожиданно стал утверждать, что так на самом деле и должно быть. Он развил теорию, согласно которой злодей, собирающийся напасть первым, должен сознательно выбрать момент, когда начать движение, и это замедляет его действия, тогда как реакция героя — акт чисто рефлекторный, и потому он действует быстрее. С бором никто не соглашался, разгорелся спор. Чтобы разрешить его, послали в лавку за парой игрушечных ковбойских револьверов. В последовавшей серии «дуэлей» Бор, выступая в роли положительного героя, «перестрелял» всех своих молодых соперников!