Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:

Трудно себе представить, что привлекало Бора в этих картинах. «Я вполне могу допустить, — говорил он, — что хорошенькая героиня, спасаясь бегством, может оказаться на извилистой горной тропе. Менее вероятно, но всё же возможно, что мост над пропастью рухнет как раз в тот момент, когда она на него наступит. Исключительно маловероятно, что в последний момент она схватится за былинку и повиснет над пропастью, но даже с такой возможностью я могу согласиться. Совсем уж трудно, но всё-таки можно поверить в то, что красавец ковбой как раз в это время будет проезжать мимо и выручит несчастную. Но чтобы в этот момент тут же оказался оператор с камерой, готовый заснять все эти волнующие события на плёнку, — уж этому, увольте, я не поверю!»

Введение

в теорию S-матрицы

рассматриваемую главным образом с точки зрения приложений к описанию жизни физиков и прежде всего учитывающую характерные для таких систем статистические закономерности.

Хорошо известно, что за последние годы S-матричная теория добилась существенных успехов в описании процессов рассеяния и взаимного превращения элементарных частиц. Это вдохновило нас на попытку применить её (быть может, не совсем строго) к изучению процессов, происходящих с физиками в течение всей их жизни. Особое внимание мы будем уделять системам, к которым можно применять статистику, т. е. системам, состоящим из большого числа объектов (в нашем случае физиков).

Рассматриваемая нами система в момент времени t = —оо представляет собой падающий поток физиков, которых можно считать почти свободными. Согласно двум решениям уравнений движения, этот поток можно разбить на две части: запаздывающие физики и опережающие физики (последние в основном из Принстона; отличаются они тем, что никогда не занимаются изучением истории рассматриваемого вопроса).

В течение всей своей жизни физики вступают во взаимодействие с различными системами. Сила этого взаимодействия зависит как от искусства и напористости каждого отдельного физика, так и от того, каковы эти системы — консервативны или либеральны. К моменту времени t = оо поток физиков распадается на различные продукты реакции, полное число которых можно было бы в принципе получить из известных формул для S-матрицы, если бы её вид был в настоящее время известен. Продукты можно распределить по так называемым каналам реакции, из которых мы назовём здесь лишь некоторые:

а) рассеянный физик;

б) профессор;

в) математик;

г) инженер-реакторостроитель;

д) бюрократ.

Из самых общих свойств S– матрицы, и особенно из её релятивистской инвариантности, можно заключить, что полная энергия, включая массу покоя, является интегралом движения физика по жизни. Поскольку известно, что с возрастом масса покоя возрастает, немедленно делаем вывод, что остальная энергия с течением времени падает.

Для получения более точных результатов необходимо учесть взаимодействие физиков друг с другом. Для этой цели рассмотрим область конфигурационного пространства, так называемый «институт», где взаимодействие максимально. Эта область, в дальнейшем ради краткости именуемая КОВФ (конфигурационная область взаимодействия физиков), отделена от внешнего мира некоторым потенциальным барьером. Возможные состояния физиков в такой потенциальной яме можно задать четырьмя квантовыми числами, из которых первые три имеют общеизвестный смысл. Четвёртое же квантовое число, соответствующее двум возможным для физика состояниям сна и бодрствования, классического аналога не имеет, поскольку, согласно квантово-механическому принципу дополнительности, ни одно из этих состояний без примеси другого наблюдено быть не может. Возможные значения этого квантового числа мы в дальнейшем будем обозначать символами «+» и «—» соответственно.

Совершенно ясно, что силы, обычно действующие на физиков, столь велики, что вести какие-либо расчёты по теории возмущений вряд ли представляется целесообразным. Поэтому для получения результатов мы должны обратиться к упрощённым моделям. Однако рассмотрение последних вывело бы нас далеко за рамки настоящей статьи. Результаты этих исследований на моделях мы постараемся изложить в последующих работах. Кроме того, эти же результаты войдут в подготавливаемый нами карманный физический справочник в пяти томах.

— А вот и сообщение Смита.

О возможности создания электростанций на угле

О. Фриш [217]

От редактора. Приводимая ниже статья перепечатана ежегодника Королевского института по использованию энергетических ресурсов за 40905 год, стр. 1001.

В связи с острым кризисом, вызванным угрозой истощения урановых и ториевых залежей на Земле и Луне, редакция считает полезным призвать к самому широкому распространению информации, содержащейся в этой статье.

Введение. Недавно найденный сразу в нескольких местах уголь (чёрные, окаменевшие остатки древних растений) открывает интересные возможности для создания неядерной энергетики. Некоторые месторождения несут следы эксплуатации их доисторическими людьми, которые, по-видимому, употребляли уголь для изготовления ювелирных изделий и чернили им лица во время погребальных церемоний.

Возможность использования угля в энергетике связана с тем фактом, что он легко окисляется, причём создаётся высокая температура с выделением удельной энергии, близкой к 0,0000001 мегаватт-дня на грамм. Это, конечно, очень мало, но запасы угля, по-видимому, велики и, возможно, исчисляются миллионами тонн.

Главным преимуществом угля следует считать его очень маленькую по сравнению с делящимися материалами критическую массу. Атомные электростанции, как известно, становятся неэкономичными при мощности ниже 50 мегаватт, и угольные электростанции могут оказаться вполне эффективными в маленьких населённых пунктах с ограниченными энергетическими потребностями.

Проектирование угольных реакторов. Главная трудность заключается в создании самоподдерживающейся и контролируемой реакции окисления топливных элементов. Кинетика этой реакции значительно сложнее, чем кинетика ядерного деления, и изучена ещё слабо. Правда, дифференциальное уравнение, приближённо описывающее этот процесс, уже получено, но решение его возможно лишь в простейших частных случаях. Поэтому корпус угольного реактора предлагается изготовить в виде цилиндра с перфорированными стенками. Через эти отверстия будут удаляться продукты горения. Внутренний цилиндр, коаксиальный с первым и также перфорированный, служит для подачи кислорода, а тепловыделяющие элементы помещаются в зазоре между цилиндрами. Необходимость закрывать цилиндры на концах торцовыми плитами создаёт трудную, хотя и разрешимую математическую проблему.

Тепловыделяющие элементы. Изготовление их, по-видимому, обойдётся дешевле, чем в случае ядерных реакторов, так как нет необходимости заключать горючее в оболочку, которая в этом случае даже нежелательна, поскольку она затрудняет доступ кислорода. Были рассчитаны различные типы решёток, и уже самая простая из них — плотноупакованные сферы, — по-видимому, вполне удовлетворительна.

Расчёты оптимального размера этих сфер и соответствующих допусков находятся сейчас в стадии завершения. Уголь легко обрабатывается, и изготовление таких сфер, очевидно, не представит серьёзных трудностей.

Окислитель. Чистый кислород идеально подходит для этой цели, но он дорог, и самым дешёвым заменителем является воздух. Однако воздух на 78 % состоит из азота. Если даже часть азота прореагирует с углеродом, образуя ядовитый газ циан, то и она будет источником серьёзной опасности для здоровья обслуживающего персонала (см. ниже).

Управление и контроль. Реакция начинает идти лишь при довольно высокой температуре (988° по Фаренгейту). Такую температуру легче всего получить, пропуская между внешним и внутренним цилиндрами реактора электрический ток в несколько тысяч ампер при напряжении не ниже 30 вольт. Торцовые пластины в этом случае необходимо изготовлять из изолирующей керамики, и это вместе с громоздкой батареей аккумуляторов значительно увеличит стоимость установки. Для запуска можно использовать также какую-либо реакцию с самовозгоранием, например между фосфором и перекисью водорода, и такую возможность не следует упускать из виду.

Поделиться:
Популярные книги

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Второй Карибский кризис 1978

Арх Максим
11. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.80
рейтинг книги
Второй Карибский кризис 1978

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать