Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:
Первое — вероятность исхода события не очевидна заранее. И тогда значение вероятности может быть установлено лишь на опыте. К этому, так называемому статистическому, методу определения вероятности мы будем возвращаться неоднократно и тогда подробнее о нем поговорим.
Другая трудность, скорее логического порядка, появляется тогда, когда нет однозначности в выделении группы явлений, к которой относится интересующее нас событие.
Скажем, некто Пьер отправился на мотоцикле на работу на улицу Гренель и по дороге наскочил на грузовик. Можно ли ответить, какова вероятность этого грустного происшествия? Без сомнения, можно,
Итак, вывод один: когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление — с этим уж ничего не поделаешь.
Вернемся теперь к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани — 1/6, и никаких математических задач в такой игре не возникает.
При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестерок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестерки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестерок одновременно будет равна произведению двух вероятностей (1/6•1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.
В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, — спрашивал игрок, — ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.
Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики — основного инструмента расчетов вероятностей.
Итак, в чем же дело? А вот в чем.
Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашел, что «десять» осуществляется 27 способами, а «девять» — 25.
Эмпирическое наблюдение получило теоретическое истолкование. Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?
Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2, и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестерка на третьей; единица на первой, шестерка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и еще два — когда на первой кости выпадет шестерка (этот вариант приведен в таблице).
Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четверки, ибо перестановка цифры на второй и третьей костях не дает нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.
Наконец, ясно, что если сумма разложена на 3 + 3 + 3, то на костях такое событие осуществляется единственным способом.
В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашел Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.
Это с виду простое объяснение не лежало на поверхности. Достаточно сказать, что Лейбниц полагал одинаковыми вероятности появления на двух костях как 11 очков, так и 12. После работы Галилея ошибочность такого заключения стала очевидной: 12 осуществляется единственным способом: двумя шестерками, а 11 появляется в двух случаях, когда шестерка на первой кости, а пятерка — на второй, и наоборот.
При бросании двух костей чаще всего появляется сумма, равная 7. Имеется шесть возможностей набора этой суммы. Суммы 8 и 6 осуществляются уже пятью комбинациями каждая. Проверьте, если хотите, сами наше заключение.
ЧТО НАША ЖИЗНЬ — ИГРА
«Чекалинский стал метать, руки его тряслись. Направо легла дама, налево туз.
— Туз выиграл! — сказал Герман и открыл свою карту.
— Дама ваша убита, — сказал ласково Чекалинский.
Герман вздрогнул: в самом деле, вместо туза у него стояла пиковая дама. Он не верил своим глазам, не понимал, как мог он обдернуться».
Я не берусь в деталях объяснять читателю, в чем заключалась игра в штосс, столь распространенная в высшем петербургском обществе особенно в первой половине XIX века. Но основная ее идея проста. Банкомет и понтирующий игрок берут по колоде, распечатывают их, игрок выбирает из колоды карту, на которой записывает куш или кладет на карту деньги. Банкомет начинает метать, то есть кладет в открытую карты — направо, налево, направо, налево…
Та карта, что ложится налево, дана, а направо — бита. Легла выбранная вами карта направо — банкомет забирает деньги, налево — платит вам столько, сколько было поставлено на карту.
В игре есть варианты. Скажем, игроки загибают пароли, или играют мирандолем, или ставят на руте. Не знаете, что это такое? Я тоже. Но главное состоит в том, что штосс — игра с равными шансами для банкомета и партнера. Поэтому сильные в художественном отношении сцены, встречающиеся почти у всех русских романистов, где описывается умелая игра одного и беспомощная другого, лишены, так сказать, научного обоснования.
В «Войне и мире» Долохов обыгрывает Ростова вполне планомерно. Долохов решил продолжать игру до тех пор, пока запись за Ростовым не возрастет до 43 тысяч. Число это было им выбрано потому, что 43 составляло сумму сложенных его годов с годами Сони.
Читатель верит, что смелый, резкий и решительный Долохов, которому удается все, хорошо играет в карты. А мягкий, добрый, неопытный Ростов, кажется, не умеет играть и не может выиграть. Великолепная сцена заставляет нас верить, что результат карточной борьбы предопределен.