Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:

Пока результат нашего сражения с рулеткой нулевой. Так что занятие можно было бы считать безобидным, если бы не упомянутое зеро. Мы говорили, что вероятность красного цвета не 1/2, а 18/37. Поэтому проигрыши и выигрыши в среднем не уравновесятся, и год закончится с убытком для клиентов, поскольку число грустных дней для них будет несколько превышать число радостных. Например, вероятность полностью «красного» дня равна 18/37 в пятой степени, а сплошь «черного» — 19/37 в пятой степени. Если вы не поленитесь заняться арифметикой, то найдете, что эти вероятности равны соответственно 0,027 и 0,036. Это значит, что один «красный»

день в среднем приходится уже не на 32 дня, а на 36, а один «черный» будет встречаться через 28 дней.

Я отдаю себе полностью отчет, что все эти доказательства о проигрыше «в среднем» не подействуют на азартного игрока. Из наших чисел он прежде всего обратит внимание на то, что все-таки десяток «красных» дней на год приходится. Кто его знает, подумает он, может быть, именно сегодняшний день и будет таким! Хорошо бы было, если бы этот день оказался для него «черным». Он отбил бы у него охоту к играм, и на этом он наверняка выиграл бы, дело это добром никогда не кончается.

А теперь оставим моральные поучения, к которым азартные игроки скорее всего глухи, и рассмотрим еще несколько рулеточных проблем.

Стоит, пожалуй, обсудить вопрос о «счастливом месяце».

«В этот летний месяц, — прочитал я в воспоминаниях какого-то любителя острых ощущений, — мне здорово везло. За весь месяц я проиграл лишь два раза, не пропустив ни одного дня».

Для простоты будем считать, что вероятность выигрыша равна одной второй (1/2). Тогда так же, как при составлении таблички к и ч, можно подсчитать вероятности появления «черных» дней за месяц. Что же окажется?

Выигрывать 29 и 30 дней в месяц совершенно немыслимо; 28 выигрышных дней имеют вероятность одну миллионную долю; выигрывать 27 дней в месяц можно с шансом одна стотысячная; 26 дней — одна пятнадцатитысячная; 25 дней — одна трехтысячная и 24 выигрышных дня осуществляются с вероятностью в одну тысячную. Лишь это число может внушить мне доверие к автору упомянутого мемуара. Что же касается случая, когда число «красных» дней, по крайней мере, в два раза больше «черных» (двадцать и десять), то это уже вполне реальная вещь, ибо соответствующая вероятность равна одной десятой. Тот, кто играет всю свою жизнь, переживал такие счастливые месяцы, но… не надо забывать, что ему пришлось претерпеть такое же число несчастливых месяцев.

Игроки в рулетку (или в другие игры, где ни расчет, ни психологический анализ «не работают») могут быть поделены на два семейства. Одни играют как попало или по приметам. Скажем, сегодня двадцать третье число, рассуждает такой игрок, это день рождения моей невесты, значит, число двадцать три принесет мне счастье. Или, думает другой, среди игроков есть некто, которому сегодня дико везет, — играю как он. И так далее до бесконечности.

Другая группа игроков пытается уловить систему. Разумеется, в этом деле никакой системы нет и быть не может. Такова уж природа случая. И тем не менее я нисколько не сомневаюсь, что по мере роста серии ккккк… число игроков, ставящих на «черное», будет непрерывно расти. «А как же иначе, — обычно рассуждают они, — ведь длинные серии одинакового цвета встречаются значительно реже. Значит, после пяти или шести «красных» уж наверное появится «черное».

Абсурдность этого рассуждения очевидна. Оно противоречит очень простой мысли: у рулетки нет памяти, рулетка не знает, что было раньше, и перед каждым броском шарик все прошлое стирает. А если так, то перед каждым броском (даже и таким, который следует после двадцати «красных») вероятность «черного» и «красного» одинакова.

Правильно? Вы не находите аргументов против этого простого рассуждения? Да их и нет.

— Позвольте, — вмешивается читатель, которого назовем рассеянным, — вы же сами писали, что длинные серии бывают редко. И чем они длиннее, тем реже выпадают.

— Ну и что же? — поддерживает автора читатель внимательный. — Это не имеет ни малейшего отношения к утверждению, что у рулетки отсутствует память

— То есть как не имеет? — сердится рассеянный читатель. — Пять «красных» бывает реже, чем четыре, а шесть реже, чем пять. Значит, если я ставлю на «черное» после того, как «красное» вышло четыре раза подряд, я и следую теории вероятностей, которую автор пытается нам втолковать.

— Нет, не следуете. Серий из пяти «красных» ровно столько же, сколько из четырех «красных» подряд и одного «черного»: ккккк и ккккч имеют равные вероятности.

— Как так?! Ведь автор говорил пять «красных» бывает реже, чем четыре «красных»?

— Нет, мой дорогой, автор говорил не так. Из пяти игр появление «красного» цвета пять раз реже, чем появление четыре раза «красного» из пяти в любом порядке. Вы лучше вернитесь к табличке на странице 17 [ссылка].

Рассеянный читатель с недовольным видом листает книгу.

— Нашли? Вы видите, ккккк встречается один раз, а четыре «красных» в серии из пяти игр (ккккч, кккчк…) встречаются четыре раза.

— Так я же прав!

— Ничего вы не правы. Вариант-то ккккч всего лишь один.

— ?!!!

— Начинаете понимать? Вот в том-то и дело. Конечно, чем одноцветная серия длиннее, тем она реже встречается. Но серия в десять «красных» имеет ту же вероятность, что девять «красных» подряд с завершением на «черном» цвете. Серия в двадцать «красных» будет встречаться столько же раз, сколько серия из девятнадцати «красных» и двадцатого «черного». И так далее.

Я, кажется, действительно понял. Как странно! На чем же тогда основывается это столь распространенное заблуждение?

— Ну это уже область психологии, — удовлетворенно улыбается внимательный читатель. — Но, мне кажется, дело здесь в том, что у игрока создается впечатление, что появление длинных серий нарушает равновесие «красного» и «черного», и рулетка должна немедленно рассчитаться за нарушение этого равновесия. А то, что такая расплата означает наличие сознания у рулетки, игроков не волнует.

Поблагодарив внимательного читателя, последуем дальше.

Другое распространенное заблуждение состоит в том, что можно наверняка выиграть, удваивая ставки. Опять же в основе этой «системы» лежит идея о редкости длинных серий. Скажем, я ставлю один франк на «красное» и проигрываю; ставлю два, опять проигрываю; ставлю четыре… В конце концов я выигрываю. И тогда не только возвращаю свой проигрыш, но и остаюсь в определенном выигрыше. Действительно, пусть мною проигран один франк, затем два, затем еще четыре, потом восемь, то есть всего пятнадцать монет, а следующая ставка — шестнадцать — приносит удачу в 32 монеты. Итак, за потраченный 31 франк я получаю 32 франка. Чистый доход — один франк.

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Ледяное проклятье

Михайлов Дем Алексеевич
4. Изгой
Фантастика:
фэнтези
9.20
рейтинг книги
Ледяное проклятье

Путь Шамана. Шаг 5: Шахматы Кармадонта

Маханенко Василий Михайлович
5. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.34
рейтинг книги
Путь Шамана. Шаг 5: Шахматы Кармадонта

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й