Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:
Разумеется, это неверно. Сказать про человека, что он хорошо играет в игру, в которой проиграть и выиграть шансы одинаковы, это значит обвинить его в шулерстве.
Не знаю, как другие, но я не могу избавиться от впечатления, что Арбенин в лермонтовском «Маскараде» — вспомните сцену, когда он садится играть за князя, а зрители комментируют: «Зажглось ретивое», — знает недозволенные приемы, не допускает, чтобы они были использованы против него и не брезгует применять их сам. Только в этом смысле можно говорить, что игрок хорошо играет в штосс и другие подобные игры.
Герой мог проиграть, а мог с таким же успехом и выиграть. В «честной» игре
Чтобы оценить реалистичность драматических событий, разыгравшихся в тот вечер, предположим, что Ростов все время ставил на карту одну и ту же сумму, скажем тысячу рублей. Чтобы проиграть сорок тысяч, нужно, чтобы число проигрышей превосходило число выигрышей на сорок.
«Через полтора часа времени большинство игроков уже шутя смотрело на свою собственную игру», — читаем мы в романе.
Таким образом, проигрыш Ростова свершился часа за два-три. Одна талия, то есть одна раскладка карт, длится, конечно, не более чем одну-две минуты. Значит, число игр было никак не меньше двухсот, скажем для определенности, 120 проигрышей и 80 выигрышей. Вероятность того, что из двухсот игр, по крайней мере, 120 будут проиграны, вычисляется по формулам теории: она близка к 0,1. Вы видите, что проигрыш Ростова — явление, не требующее объяснений, выводящих нас за рамки науки. Он мог бы и выиграть, но по замыслу Льва Николаевича ему надо было проиграть.
Есть лишь одно обстоятельство, которое нарушает равенство игроков, сражающихся в такие игры, как игральные кости или штосс, то есть в игры, где игрокам ничего не надо решать, ибо игрой не предусмотрен выбор (за исключением выбора: играть или отказаться): этим обстоятельством является богатство. Нетрудно видеть, что шансы на стороне того игрока, у которого больше денег. Ведь проигрыши и выигрыши чередуются случайно, и в конце концов обязательно встретится то, что называют «полосой везения» или «полосой невезения». Эти полосы могут быть настолько затяжными, что у партнера победнее будут выкачаны все деньги. Вычислить вероятность проигрыша не представляет труда: надо лишь возводить одну вторую в соответствующую степень. Вероятность проиграть два раза подряд — это одна четверть (1/2)2, три раза подряд — одна восьмая (1/2)3… восемь раз подряд — одна шестьдесят четвертая (1/2)8. Если игра повторяется тысячу раз — а это, наверное, вполне возможно, ибо, как пишут в романах, игроки просиживают за картами ночи напролет, проигрыш 8 раз подряд будет делом обычным. Разумный игрок (да простится мне подобное сочетание слов) должен быть готов к таким «полосам», и они не должны «выбивать» его из игры вследствие опустошения карманов.
В начале XIX века к «чистым» азартным играм, не требующим от игрока даже ничтожных умственных усилий, прибавилась рулетка. На первых порах она не получила распространения, но уже к 1863 году в столице карликового государства Монако — Монте-Карло создается грандиозное рулеточное предприятие. Игорный дом в Монте-Карло быстро стал знаменит. Во многих романах и повестях Монте-Карло выбиралось местом действия, а героем — безумец, собирающийся обогатиться за счет его величества случая или, того хуже, за счет изобретения беспроигрышной системы.
Произведения эти вполне реалистичны. Если их дополнить еще полицейскими протоколами о неудачниках, покончивших с собой из-за крушения надежд стать Крезом за счет княжества Монакского, то получится увесистый отчет о пагубном очаровании, которое таит в себе игорный дом.
Наверное, можно было бы не описывать рулеточное колесо и разграфленное поле, на клетки которого бросают денежные жетоны. И все же несколько слов для читателей, незнакомых с художественной литературой о Монте-Карло, сказать стоит. Рулетка — это большая тарелка, дно которой может вращаться относительно неподвижных бортов. Дно-колесо разбито на 37 ячеек, пронумерованных от 0 до 36 и покрашенных в два цвета: черный и красный.
Колесо закручивается, и на него бросается шарик. Он танцует, беспорядочно перепрыгивая из ячейки в ячейку. Темп колеса замедляется, шарик делает последние нерешительные прыжки и останавливается. Выиграло, скажем, число 14 — красный цвет.
Игроки могут ставить на красное или черное; на чет или нечет; первую, вторую или третью дюжину и, наконец, на номер.
За угадывание цвета или четности вы получаете денег вдвое больше, чем внесли на игру, за выигрыш дюжины — втрое, за выигрыш номера — в тридцать шесть раз. Эти числа строго соответствовали бы вероятностям появления, если бы не одно маленькое «но» — это ноль (зеро). Зеро — выигрыш банкомета. При нем проигрывают и поставившие на черное, и те, кто надеялся на красный цвет.
Ставя на красное, искатель счастья действует с шансом на выигрыш, равным 18/37: чуть-чуть меньше половины. Но за счет этого «чуть-чуть» существует государство Монако и получают хорошие дивиденды пайщики Монте-Карло. Из-за зеро игра в рулетку уже не равноценна для игрока и банкомета. Поставив 37 раз по франку, я в среднем выиграю 18 раз, а проиграю 19.
Если я 37 раз ставлю по франку на 14-й (или какой-либо другой) номер, то в среднем я выиграю один раз из тридцати семи, и за этот выигрыш мне уплатят лишь 36 франков. Так что, как ни крути, при длительной игре проигрыш обеспечен.
Значит, нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует свое счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.
За год игры герой встретится со всеми возможными вариантами красного и черного (точнее, не красного, так как и зеро мы отнесем к черному). Вот эти варианты:
Как видно, их всего 32 варианта. Один из них содержит пять к, пять — состоят из четырех к, десять — из трех к. Разумеется, те же числа будут и при подсчете черных случаев (ч).
Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелегкая — сплошная трепка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведенных в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «черных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придется столько же дней неудачных, когда лишь один раз появится красный цвет, — их будет пятьдесят. Чаще всего — по сто дней — мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей — два, или наоборот, когда проигрышей три, а выигрышей — два.