Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:

Прогноз погоды слушают внимательно: негодуют, когда он не выполняется, радуются удачам метеорологов.

Метеостанции, раскиданные по всем уголкам земного шара, ведут систематические наблюдения за погодой уже много десятков лет. Ими накоплен огромный материал о температуре воздуха и почвы, об облачности и ветре, о давлении и количестве осадков. Хотите узнать, какая температура воздуха была в 10 часов утра 12 июля 1927 года в городе Ефремове? Пожалуйста, порывшись в архивах, вы найдете эти сведения. Все они обрабатываются по тем правилам, которые мы обсуждали.

Для каждого элемента погоды построены самые разные кривые распределения. Ведь не угадаешь наперед, какие случайные величины заинтересуют специалиста, планирующего сельскохозяйственные

работы, и курортника, интересующегося погодой в прогулочных целях. В метеорологических справочниках приведены средняя годовая температура, средняя месячная температура, средняя максимальная температура (для каждого дня всегда отмечается верхняя отметка, до которой добиралась ртуть термометра), средняя минимальная температура… Все эти величины подвержены беспорядочным (и систематическим) колебаниям. Поэтому интересны средние отклонения от средних значений для всех этих величин.

В этом году я собираюсь поехать встречать Новый год в Сухуми или Гагру. Перед принятием такого решения я выписал из библиотеки справочник по климату и с нудной дотошностью ученого деятеля стал анализировать данные о погоде этих мест.

Оказалось, что у меня есть шансы попасть в настоящую жару. В городе Сухуми в январе был однажды зафиксирован абсолютный максимум температуры в 24 градуса. Вспомнив, о чем писал на предыдущих страницах, я решил не полагаться на мизерную вероятность повторения такой температуры в эту зиму и в соответствующей таблице нашел «средний из абсолютных максимумов». (Это вот что такое. Каждый год отмечается максимальная температура января, февраля и т. д. «Среднее», о котором говорится, было выведено чуть ли не за 100 лет.) «Средний абсолютный максимум» оказался равен 18 градусам. А на такую температуру, хотя бы в течение одного-двух дней, уже можно рассчитывать даже невезучему субъекту. Восемнадцать градусов в тени — этого совершенно достаточно, чтобы с полным наслаждением загорать; а загорать на солнце в январе — это совершенно превосходно. Значит, беру отпуск в январе.

Но, скажет внимательный читатель, знание одного лишь среднего значения абсолютных максимумов совершенно недостаточно, чтобы судить о вероятности события. Ведь нормальная кривая может быть очень плоской, колокол может быть невысоким, и тогда вероятность среднего будет невелика.

Правильно. Такие 18 градусов — сомнительный залог блаженства. Я продолжаю листать справочник и нахожу то, что требуется. Другая таблица дает значение «среднего отклонения» «средней максимальной температуры» от «многолетнего среднего январского»: это 2 градуса. («Среднее отклонение» — это еще одна характеристика ширины кривой нормального распределения. Полуширина кривой, с которой мы подробно знакомили читателя, немного больше «среднего отклонения».)

Как получены эти 2 градуса? Предположим, в 1900 году средняя январская температура равнялась 15 градусам, в 1901 году — 14, в 1902 — 18, в 1903 — 20, в 1904 — 17 и т. д. Поместив рядом, в следующей графе таблицы, абсолютные отклонения от среднего (то есть от 18 градусов), получим для 1900 года — 3, 1901 — 4, 1902 — 0, 1903 — 2, 1904 — 1 и т. д. Теперь остается сложить эти цифры за все годы наблюдений и разделить на число лет. Так были получены эти 2 градуса.

Добыв «среднее отклонение», я значительно прояснил условия проведения своего отпуска. То есть могу достаточно смело рассчитывать на то, что встречусь с такими днями, когда температура будет лежать в пределах 16–20 градусов. Ну а будут ли отклонения от 18 градусов больше 2? Возможно. Но если температура не поднимается выше 14 градусов (отклонение в два раза больше среднего), то я буду считать, что мне не повезло. Если же за месяц пребывания в Сухуми столбик термометра не пересечет 12 градусов — это уже редкостное невезение, и старожилы скажут, что такого они не помнят.

На этом можно было бы закончить разговор о метеорологических исследованиях, но я засомневался в его исчерпывающей полноте. Наши рассуждения насчет вероятности отклонений справедливы в том случае, если распределение температуры подчиняется нормальному гауссову закону. А подчиняется ли оно на самом деле? Данные о «среднем значении» и о «среднем отклонении» от среднего — это хорошо, а «полная кривая распределения» все-таки лучше. Какова она?

Составители справочника предусмотрели и такой запрос и привели данные для построения многолетней средней кривой распределения максимальных температур января. Согласно этим данным ниже нуля температура в январе не наблюдалась ни разу. В среднем 2,2 дня в январе имеют температуру между 0 и 5 градусами (можно сказать и так: вероятность температуры между 0 и 5 градусами в январе в городе Сухуми равняется 2,2/31, то есть 0,07 (семь процентов шансов). Температура между 5 и 10 градусами наблюдалась в среднем в течение 11,3 дня января; между 10 и 15 градусами — 12,4 дня; между 15 и 20 — 4,7 и, наконец, между 20 и 25 градусами — 0,4 дня. Я построил кривую и увидел, что все в порядке — получилась нормальная колоколообразная кривая.

Дни с температурой выше 10 градусов (в Москве в это время мороз и заносы) я считаю превосходной погодой: можно загорать, купаться, ходить на водных лыжах, кататься на катере. А таких дней в среднем за месяц будет 17,5, то есть больше половины. Значит, вероятность хорошей погоды одна вторая: орел или решка? Можно рискнуть — взять отпуск в январе и поехать загорать в Сухуми.

Итак, вы видите, что справочник по климату может великолепно служить руководством к действию: при его помощи можно делать определенные прогнозы. Некоторые предсказания оказываются почти категорическими: в январе в Сухуми температура ниже 0 не опускается, до плюс 12 в какие-то дни она повысится непременно и т. д. Менее решительные суждения могут быть сформулированы в виде предположений. И кой-какие прогнозы можно делать и без глубоких соображений. Разумеется, носят они вероятностный характер, но сохраняют этот характер и в том случае, когда их делают специалисты.

* * *

— Это ни на что не похоже, — сказала она тоскливо. — Пропал весь отпуск. Дождь и дождь не переставая. Сколько можно! А еще говорят, что этот месяц обычно не очень дождливый.

— Старожилы говорят, что такого не помнят, — сказал он. — Аномалия. Не повезло. А что сказало бюро погоды?

— Обещают на завтра такую же погоду, как сегодня, — и после паузы: -

Слушай, давай уедем, черт с ними, с путевками.

— Не угадаешь. Уедешь, и как раз дожди кончатся. Хоть бы наука помогла. Вычислить вероятность продолжения дождей, что ли, а потом решить?

— Разве можно такие вещи вычислять? — с недоверием спросила она. — А потом… ну, допустим, вычислишь, получишь 30 процентов за дождь, а 70 против.

Решим остаться и… проиграем. При 70 проиграть не так уж трудно.

Честно говоря, я не решился бы дать совет этой паре. Проиграть не так уж трудно и при шансах на выигрыш в 90 процентов. Но все же, если следовать вероятности всегда, то, подводя итоги, придешь к выводу, что расчеты помогли.

Что же касается возможности рассчитать, будет ли дождь идти завтра после того, как он уже льет целую неделю, то она имеется. Существует довольно простая формула математика прошлого Томаса Бейеса, опубликованная впервые в 1763 году в его посмертной работе «Опыт решения одной проблемы теории вероятностей». В ней впервые был поставлен вопрос о том, как может быть использована теория вероятностей для составления того или иного суждения о явлении, располагая лишь ограниченным рядом наблюдений. Пусть перед нами урна с шарами. Шары могут быть только белыми, могут быть только черными, а могут быть и белые и черные, то есть состав шаров — смешанный. Мы скажем, что любой состав урны имеет равные априорные вероятности.

Поделиться:
Популярные книги

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Огни Аль-Тура. Завоеванная

Макушева Магда
4. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Завоеванная

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2