Интернет-журнал "Домашняя лаборатория", 2008 №4
Шрифт:
Эта структура называется расширенным промотором. ?-субъединица РНК-полимеразы садится на промотор в ДНК и разными частями белковой молекулы взаимодействует с частями промотора. Распознает его ?-субъединица через большую бороздку ДНК. После того, как ?-субъединица в составе кор-фермента связалась с промотором, ДНК на этом участке начинает плавиться (расплетаются нити ДНК). На прошлой лекции обсуждалось, что в паре А-Т связи между нуклеотидами разрываются легче, чем в паре Г-Ц, так как последняя содержит 3 водородных связи, а первая — две. Промотор содержит пары А-Т, поэтому плавится он достаточно легко. И затем начинается синтез РНК, растущая цепь РНК выталкивает ?-субъединицу и происходят еще другие изменения, которые вызывают диссоциацию ?-субъединицы от кор-фермента.
Теперь приведем
На самом деле разрезают не белок, а ДНК, потом кусочки ДНК от разных бактерий сшивают вместе и затем вводят в бактерию, там при активизации этой части ДНК синтезируется гибридный белок. Эта технология относится к генной инженерии, она была разработана в 70-х годах.
Еще одной особенностью транскрипции является то, что кор-фермент бактериальной клетки один и тот же, а а-субъединицы могут быть разными. У кишечной палочки всего 7 а-субъединиц, они узнают разные промоторы. Зачем это нужно? Если клетке срочно нужно переключить синтез белков с одной группы генов на другую, она может использовать разные а-субъединицы. Например, есть гены теплового шока, если кишечную палочку подогреть до состояния, когда жить ей станет очень тяжело, она включает аварийную систему сопротивления тепловому шоку, сопротивления тем разрушениям, которые произошли в клетке. В эту систему входит тот набор генов, который в норме работать не должен, перед этими генами свой особый промотор. И тогда другая ?-субъединица, не основная, синтезируется и активирует эти гены. То есть смена субъединицы — это смена программы работы генов. Это способ регуляции работы генов.
Трансляция
Перейдем к трансляции — синтезу белков. Она проводится рибосомами. Рибосома состоит из двух субчастиц: большой и малой.
Каждая субчастица состоит из нескольких десятков белков, каждый из которых уже изучен, известно, каким образом каждый белок уложен в субчастицу. При исследовании белков используют метод электрофореза, то есть в электрическом поле в специальном геле или специальном носителе молекулы белков разъединяются в зависимости от их заряда и молекулярного веса, то есть под действием поля они начинают двигаться и могут отодвигаться друг от друга на разное расстояние. Другим методом разделения белков является хроматография, в результате этого метода на носителе получают пятнышки, каждый из которых соответствует отдельному белку.
Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее
Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомногй или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три "стебля" с петлями на концах и один "стебель", образованный 5'- и 3'-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. "Голова" на этом листе представлена антикодонной петлей, здесь находится антикодо — те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем — сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.
В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).
Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза — на один.
Аминоцил т-РНК входит в рибосому, комплементарно связываясь с кодоном мРНК, затем происходит реакция при которой аминокислотные остатки связываются друг с другом, а т-РНК удаляется.
"Словарь" для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом. Аминокислот — 20, нуклеотидов — 4, число комбинаций из 4 по 2 = 16, а аминокислот 20, поэтому кодировка не двух, а трехбуквенная, каждая тройка называется кодоном. Каждая аминокислота кодируется тремя нуклеотидами в мРНК (которая, в свою очередь, кодируется ДНК).
В таблице на рисунке боковые столбцы кодируют левую и правую букву кодона, верхняя строка — среднюю. Например, кодон AUG кодирует аминокислоту метионин.
Число комбинаций из 4 по 3 = 64, то есть некоторые аминокислоты кодируются несколькими кодонами. Три кодона не кодируют никакую аминокислоту, они называются терминирующими. Когда они попадаются в мРНК, рибосома прекращает свою работу и готовая полипептидная цепь выбрасывается наружу.
Таблица генетического кода была составлена в 60-х годах. Начало положили Ниренберг и Маттеию. Они пытались производить в пробирке эксперименты на клеточных экстрактах, к которым были добавлены искусственные матрицы РНК. В то время считалось, что кодоны, состоящие из одного нуклеотида (UUU или ААА) не кодируют аминокислоты. Ниренберг и Маттеи использовали полии-РНК (то есть состоящую только из урацилов) в качестве контроля в своих опытах, но именно в этой пробирке прошла реакция. Стало ясно, что кодон UUU кодирует аминокислоту фенилаланин. Затем была составлена таблица генетического кода.
Генетический код универсален. Он один и тот же у всех микроорганизмов. Есть небольшие отличия в генетическом коде митохондрий.
Генетическим кодом называется таблица соответствия кодонов аминокислотам. Когда журналисты пишут о том, что недавно расшифрован генетический код человека — это грубая терминологическая ошибка. Генетический код человека расшифрован тогда же, когда и всех остальных живых существ — в 60-х годах XX века. Недавно расшифрован геном человека, то есть полная последовательность нуклеотидов всех молекул ДНК.