Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2008 №4
Шрифт:

Структура биологии как науки. Ранние этапы эволюции жизни

ЛЕКЦИЯ № 6

Как устроена наука биология? Можно представить ее как слоеный пирог. Ее можно разрезать на куски, соответствующие объектам изучения (бактерии, простейшие, растения, животные, человек). В каждом куске будут слои, соответствующие уровню изучения: молекулярная биология, биохимия, физиология, анатомия, генетика и т. д. до экологии. Биологический подход определяется не тем, что мы изучаем (объект изучения), а методами и концепциями, используемыми для изучения наших объектов.

Напомним,

что на предыдущих лекциях мы говорили, об устройстве молекул, из которых состоят живые организмы, об основных молекулярных процессах и о биополимерах. Кратко повторим строение биополимеров. Биополимеры состоят из мономерных звеньев, которые состоят из углерода, водорода, кислорода и т. д. (см. схему ниже).

Они, объединяясь в последовательности, линейные или разветвленные, образуют функционирующие в клетке биополимеры. И функции молекул лежат в основе жизнедеятельности клетки.

БИОПОЛИМЕРЫ

Нуклеиновые кислоты C, H, N, О, Р

Белки C, H, N, O, S

Углеводы C, H, O

Липиды C, H, O

Изучение химической структуры веществ, составляющих живую клетку, было начато еще в 19 веке, но структура и функции ДНК, РНК, белков были установлены в 20 веке. За каждым открытием стоит работа многих ученых. Рассмотрим в качестве примера как были открыты нуклеиновые кислоты, как их изучали, установили их функции.

В 1868 году Фридрих Мишер в ядрах клеток обнаружил фосфорсодержащее вещество, названное им нуклеином (от слова нуклеус — ядро). Он соскабливал с гнойных бинтов клетки, в которых было много лейкоцитов, и из них выделил это вещество.

Затем, в 1889 году, удалось определить, что в состав нуклеина входит нуклеиновая кислота и белок. Этим занимался Рихард Альтман. Появился термин "нуклеиновая кислота". Затем все азотистые основания были проанализированы, их состав и структура была установлена химиками. Предполагалось, что структура ДНК выглядела следующим образом: ДНК состоит из того, что мы сейчас называем нуклеотидами, А, Т, Г, Ц; их там четыре штуки, они вчетвером образуют колечко, которое находится в ядре. В начале двадцатого века ДНК выделяли из тканей тимуса, а РНК удалось выделить из ядер клеток проростков пшеницы. Поэтому ДНК считали животной нуклеиновой кислотой (называли тимонуклеиновая кислота), а РНК — растительной. Считали, что была найдена биохимическая особенность, отличающая клетки животных и растений.

Затем в 1938 году был проведен рентгеноструктурный анализ ДНК. В частности, установили, что расстояние между нуклеотидами в ДНК равно 3,4 А. Кроме того, показали, что нуклеотиды взаимодействуют друг с другом, и что при этом азотистые основания уложены стопками. Это называется стекинг-взаимодействием (взаимодействие плоских гидрофобных поверхностей нуклеотидов). Это открытие принадлежит Уильяму Астбюри и Флорину Беллу.

В середине века было показано, что ДНК и РНК являются компонентами всех клеток. Кроме того, установили, что ДНК находится в ядре, РНК — в ядре и в цитоплазме.

В 1953 году Эрвин Чаргафф установил следующие закономерности (правило Чаргаффа): количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина (А = Т, Г = Ц). Это послужило отправной точкой в установлении структуры двойной спирали Уотсоном и Криком.

Соотношение Г-Ц и А-Т пар варьируется от организма к организму, но постоянно для каждого вида.((Г+Ц)/(А+Т) = К — коэффициент специфичности). Сейчас существует выражение "Г-Ц богатая ДНК". Вы помните, что между гуанином и цитозином существует три водородные связи, и их труднее разорвать, чем те две, которые существуют между аденином и тимином. Г-Ц богатые ДНК труднее плавят-

В середине века было установлено, что ДНК является носителем наследственности. В начале века считалось, что именно белки, как вещества, имеющие более сложную структуру, передают наследственную информацию (эту гипотезу выдвинул наш соотечественник Николай Кольцов). Два эксперимента легли в основу того мнения, что именно ДНК являются носителем

наследственности.

В 1944 году Эвери, Маклеод и Маккарти показали, что, если выделить ДНК из штаммов капсульного пневмококка (у пневмококка есть разные штаммы: образующие и не образующие защитную капсулу вокруг клетки; это наследственное постоянное свойство), а затем внести ее в бескапсульный штамм, то последний начинает образовывать капсулу. Можно было предположить, что степень очистки ДНК была невысока, и вместе с ней в образец попала часть белков, которые и передали это свойство. Тогда полученный препарат обработали протеазой (фермент, расщепляющий белки), но активность препарата при этом не потерялась; а после обработки препарата ДНКазой его способность передавать свойство образовывать капсулы полностью исчезло.

Второй эксперимент поставили через восемь лет после этого Херши и Чейз. Они использовали бактериофаги. Бактериофаги — это инфекционные агенты, способные заражать бактерии, и имеющие размеры намного меньше бактериальной клетки. В то время было неизвестно, какая именно часть бактериофага несет наследственную информацию; было лишь известно, что бактериофаги состоят из белка и ДНК. Было известно, что если бактериофаги добавить к бактериям, то они проникают в бактериальную клетку и в ней размножаются. Бактериальная клетка разрывается, и новые бактериофаги выходят наружу. В этом эксперименте использовали кишечную палочку и паразитирующие на ней бактериофаги. Белок бактериофагов был мечен радиоактивной серой (35S), а ДНК — радиоактивным фосфором (32Р). Фаги внесли внутрь бактерии. Через некоторое время, достаточное для инфицирования, бактерий отмыли в растворе, и оказалось, что сера отмылась, а внутри бактерий остался фосфор; через некоторое время эти бактерии лопнули, и из них вышли новые частицы фагов. Таким образом, было показано, что именно ДНК обеспечила синтез новых фагов, и что именно ДНК является носителем наследственной информации.

Напомним, что последовательность мономеров в цепи называется первичной структурой. Первичная структура белка — это аминокислоты, а первичная структура ДНК и РНК — это нуклеотиды. При записи первичной последовательности нуклеотиды обозначаются одной буквой (А, Т, G, С для ДНК и A, U, G, С для РНК). При записи первичной структуры белка аминокислоты обозначают либо тремя начальными буквами их английского названия (аргинин — Arg, метионин — Met) или одной буковой (обозначения указаны в таблице генетического кода в лекции 5).

И нуклеиновые кислоты, и белки обладает пространственной структурой, которую называют вторичной структурой. Последовательность нуклеотидов образует двойную спираль ДНК. Значительная часть молекулы РНК также принимает двуспиральную форму, а часть ее функционирует в одно-нитевом состоянии. На рисунке изображена транспортная и рибосомная РНК.

Для того, чтобы могли образоваться спиральные участки в РНК, части молекулы должны быть друг другу комплементарны. То есть первичная структура РНК (последовательность нуклеотидов) определяет образование вторичной структуры (двуспиральных участков). В больших молекулах РНК разные участки могут комплементарно спариваться друг с другом, образуя различные сочетания двойных спиралей. Какие же будут образовываться на самом деле? Сейчас существуют методы расчетов вторичной структуры РНК, и, по сути, они сводятся к поиску комплементарных участков и перебору возможных образуемых ими структур. Оптимальной считается та, в которой будет спарено наибольшее количество нуклеотидов, то есть наибольшая часть РНК войдет в состав двойной спирали. При этом она будет более стабильна, чем одно-нитевой клубок. Реально одно-нитевой клубок РНК для больших молекул практически не существует, существуют отдельные одно-нитевые участки. Самокомплементарные нити ДНК также могут образовывать «шпильки».

Поделиться:
Популярные книги

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Идущий в тени 6

Амврелий Марк
6. Идущий в тени
Фантастика:
фэнтези
рпг
5.57
рейтинг книги
Идущий в тени 6

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Маленькая слабость Дракона Андреевича

Рам Янка
1. Танцы на углях
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
Маленькая слабость Дракона Андреевича

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Последняя Арена

Греков Сергей
1. Последняя Арена
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.20
рейтинг книги
Последняя Арена