Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
Шрифт:
— Нет, ваше величество, — невозмутимо возразил тот, — ответ 301.
— Непостижимо! Но какой магией пользовались вы в этом случае?
— Всего лишь логическим рассуждением, ваше величество. На сей раз я шел не от ложного, а от обратного предположения. Вместо того чтобы искать число, которое при делении на 2, 3, 4, 5 и 6 дает в остатке 1, я стал искать другое, которое делится на все эти числа без остатка, — попросту их общее наименьшее кратное. Таким наименьшим кратным будет произведение 3, 4 и 5, то есть число 60, которое безусловно делится также и на 2 и на 6. Прибавим к 60 единицу, и задача решена,
— Совершенно, — сказал тот. — Мне остается лишь пожалеть о том, что вы предпочитаете считать в уме и потому пренебрегаете моим столом. Сейчас, однако, я предложу такую задачу, что без стола вам не обойтись. Вот она. Из Пизы в Рим отправились 7 старух, а старухи, как известно, запасливы. Каждая вела за собой 7 ослов. На каждом осле было навьючено по 7 мешков, в каждом мешке лежало по 7 хлебов. Сверх того, для каждого хлеба старухи захватили по 7 ножей, а для каждого ножа запасли по 7 ножен. Благоволите сосчитать, сколько всего предметов, включая, разумеется, старух и ослов, отправилось в Рим.
— Нечто подобное я уже слышал. Но где? Убейте, не помню! — шепнул Мате, когда император кончил и все, кроме Леонардо, одобрительно заулыбались.
Фибоначчи тем временем сосредоточенно размышлял, затем открыл было рот для ответа, но, взглянув на Фридриха, передумал и взял мелок
— Ваше величество, — сказал он, в задаче названо шесть разного рода предметов: старухи, ослы, мешки, хлебы, ножи и ножны. Число предметов каждого последующего рода больше предыдущего в семь раз. Стало быть, ответ сводится к сумме следующих шести чисел:
7 х 1= 7
7 х 7 = 49
49 x 7 = 343
343 х 7 = 2401
2401 х 7 = 16807
16807 х 7= 117 649
137 256
Решить эту задачу в уме таким способом действительно сложно, — продолжал Леонардо, — так как при этом надо удержать в голове шесть чисел. Но есть другой способ, позволяющий вычислить результат мысленно, не напрягая памяти. Именно им я и воспользовался. Сначала я нашел число предметов, принадлежащих только одной старухе, включая, конечно, и ее самое. Прежде всего у старухи было 7 ослов. Стало быть, беру 7, прибавляю сюда саму старуху, то есть 1, и получаю восемь: 7 + 1 = 8. Далее нахожу общее число ослов и мешков. У каждого осла было 7 мешков. Вместе с самим ослом это составляет 8 предметов. А так как ослов 7, умножаю 8 на 7 и прибавляю сюда 1 — все ту же старуху: 8 х 7 + 1 = 57. Точно так же поступаю и дальше, каждый раз умножая полученную сумму на число вещей следующего вида и не забывая при этом о старухе: 57 х 7 + 1 = 400; 400 х 7 + 1 = 2801; 2801 х 7 + 1 = 19608. Остается умножить последнее полученное число на 7, то есть на число старух, чтобы получить знакомый уже вашему величеству результат: 137256.
Видимо, второе решение произвело большое впечатление, особенно на Фридриха.
— Мессер Леонардо
Ученое собрание согласно закивало головами, присоединяясь таким образом к мнению своего повелителя. Но Мате показалось, что магистр Иоанн чем-то озабочен. Его и без того беспокойные глазки зыркали по сторонам с каким-то особенно тревожным и загнанным выражением. Похоже, успех Леонардо его не очень-то обрадовал…
— Не будем, однако, забывать, — продолжал Фридрих, — что перед нами не только замечательный вычислитель, но и тонкий геометр, человек, написавший «Практику геометрии» — книгу, которая пополняет наши геометрические познания, почерпнутые у древних, оригинальными доказательствами и изысканиями, принадлежащими самому мессеру Леонардо… Помнится, это сочинение посвящено вам, магистр Доменик?
Тот поклонился.
— Так кто же пожелает задать мессеру Леонардо вопрос из геометрии? — спросил император, обводя глазами свое ученое воинство. — Вы, магистр Теодор? Прошу!
«Наконец-то!» — подумал Фило, которому давно не терпелось услыхать этого длиннокудрого итальянца, обладавшего удивительно нежным и поэтичным лицом.
Его постигло разочарование. Голос Теодора, высокий, скрипучий, оказался далеко не таким привлекательным, как его внешность. И вот этим-то скрипучим голосом изложил он свое задание: Леонардо должен вписать в квадрат равносторонний пятиугольник так, чтобы одним из его углов служил угол заданного квадрата.
…Услыхав эту задачу, Мате прямо затрясся от любопытства. Но…
Но тут вступил в свои права закон неожиданныхпомех. Вряд ли существует на земле человек, который не испытал на себе его действия.
Допустим, вы сидите у телевизора и с наслаждением следите за событиями умопомрачительного детективного фильма. Трах! На самом интересном месте гаснет свет. Или же в кармане у вас лежат билеты на новый спектакль. Для того чтобы добыть их, вы встали в шесть часов утра и выстояли длиннющую очередь. Но накануне долгожданного дня выясняется, что вы заболели свинкой.
Фило и Мате свинкой не заболели, зато судьба подложила им откормленную свинью. Когда Леонардо взял мелок, собираясь приступить к решению, все находящиеся в кабинете, в том числе Фридрих, сгрудились над столом и совершенно заслонили и чертеж, и самого Фибоначчи, объяснения которого звучали так глухо, что разобрать их было немыслимо. Когда же склоненные над столом головы вновь поднялись, на черной полированной поверхности оказался не один, а целых три чертежа.
— Что это? — удивился Фило. — Кажется, он походя решил еще две задачи!
— Но каким способом? — чуть не плакал Мате. — Теперь нам этого никогда не узнать!
— Полно вам хлюпать, — пристыдил его Фило. — Узнаете у него самого.
Слова его несколько успокоили Мате, и приятели снова прильнули к прорезям в занавесках.
Они сделали это как раз вовремя для того, чтобы услышать похвалы, которые Фридрих расточал Фибоначчи. Император не скупился на слова: он в восторге! Ход рассуждений мессера Леонардо совершенно необычен и свидетельствует не только о глубокой осведомленности, но прежде всего о блестящем и оригинальном дарований…