Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Затем добавляются названия осей и заголовок с помощью функций `xlabel`, `ylabel` и `title`. Наконец, график отображается с помощью функции `show`.

На получившейся гистограмме мы можем увидеть распределение значений признака от 1 до 5 и их частоту в наборе данных.

2. Пример ящика с усами:

```python

import matplotlib.pyplot as plt

# Данные для визуализации

data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]

# Построение ящика с усами

plt.boxplot(data)

# Добавление названий осей и заголовка

plt.xlabel('Данные')

plt.ylabel('Значение')

plt.title('Пример

ящика с усами')

# Отображение графика

plt.show

```

На результате данного кода мы видим ящик с усами, который позволяет нам оценить основные статистические характеристики распределения данных.

Этот код использует библиотеку `matplotlib.pyplot` для построения ящика с усами. Данные `data` содержат значения признака, которые мы хотим визуализировать. Функция `boxplot` используется для построения ящика с усами на основе этих данных.

Затем добавляются названия осей и заголовок с помощью функций `xlabel`, `ylabel` и `title`. Наконец, график отображается с помощью функции `show`.

На получившемся графике мы видим ящик, который представляет межквартильный размах (от первого квартиля до третьего квартиля) и медиану (линия внутри ящика). Усы расширяются до самого нижнего и самого верхнего значения данных, а выбросы отображаются в виде точек за пределами усов.

3. Пример диаграммы рассеяния:

```python

import matplotlib.pyplot as plt

# Данные для визуализации

x = [1, 2, 3, 4, 5]

y = [2, 3, 5, 7, 11]

# Построение диаграммы рассеяния

plt.scatter(x, y, color='green')

# Добавление названий осей и заголовка

plt.xlabel('X')

plt.ylabel('Y')

plt.title('Пример диаграммы рассеяния')

# Отображение графика

plt.show

```

На результате данного кода мы видим диаграмму рассеяния, которая помогает визуализировать взаимосвязь между двумя переменными.

Этот код использует библиотеку `matplotlib.pyplot` для построения диаграммы рассеяния. Данные для визуализации представлены в виде двух списков `x` и `y`, которые содержат значения соответствующих переменных.

Функция `scatter` используется для построения диаграммы рассеяния на основе этих данных. Мы можем указать цвет точек с помощью параметра `color`.

Затем добавляются названия осей и заголовок с помощью функций `xlabel`, `ylabel` и `title`. Наконец, график отображается с помощью функции `show`.

На получившейся диаграмме мы видим точки, которые представляют пары значений переменных X и Y. По расположению точек можно сделать выводы о возможной

корреляции между этими переменными: например, положительной (если точки идут вверх) или отрицательной (если точки идут вниз).

Эти примеры демонстрируют основные возможности визуализации данных с использованием библиотеки `matplotlib` в Python.

После визуализации данных статистический анализ играет ключевую роль в понимании распределения данных и выявлении основных характеристик. В этом процессе обычно вычисляются различные статистические метрики, такие как среднее значение, медиана, стандартное отклонение, квартили и корреляции между переменными.

Среднее значение представляет собой сумму всех значений переменной, деленную на количество этих значений, и дает представление о центре распределения данных. Медиана, с другой стороны, является значением, которое разделяет распределение на две равные части, и является более устойчивой к выбросам, чем среднее значение. Стандартное отклонение измеряет разброс значений относительно среднего значения и позволяет оценить разброс данных вокруг среднего. Квартили представляют собой значения, которые делят упорядоченное распределение данных на четыре равные части и помогают понять вариабельность данных.

Кроме того, анализ корреляции позволяет определить связь между переменными: положительная корреляция указывает на то, что значения двух переменных изменяются в одном направлении, отрицательная корреляция – на изменение в противоположных направлениях, а нулевая корреляция – на отсутствие связи между переменными. Эти статистические метрики помогают исследователям и аналитикам получить глубокое понимание данных, выявить аномалии и принять обоснованные решения на основе полученных результатов.

Давайте рассмотрим пример статистического анализа данных с использованием Python и библиотеки Pandas. Предположим, у нас есть набор данных о росте и весе людей, и мы хотим провести предварительный анализ этих данных.

```python

import pandas as pd

# Создание DataFrame с данными

data = {

'Рост': [165, 170, 175, 180, 185],

'Вес': [60, 65, 70, 75, 80]

}

df = pd.DataFrame(data)

# Вывод основных статистических метрик

print("Среднее значение роста:", df['Рост'].mean)

print("Медиана роста:", df['Рост'].median)

print("Стандартное отклонение роста:", df['Рост'].std)

print("Первый квартиль роста:", df['Рост'].quantile(0.25))

print("Третий квартиль роста:", df['Рост'].quantile(0.75))

print

# Вывод корреляции между ростом и весом

print("Корреляция между ростом и весом:", df['Рост'].corr(df['Вес']))

```

В этом примере мы сначала создаем DataFrame с данными о росте и весе людей. Затем мы используем методы Pandas для вычисления различных статистических метрик, таких как среднее значение, медиана, стандартное отклонение и квартили для переменной "Рост". Мы также вычисляем корреляцию между ростом и весом, чтобы определить, есть ли связь между этими переменными.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7