Чтение онлайн

на главную

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

env = gym.make('Pong-v0')

input_dim = env.observation_space.shape[0]

output_dim = env.action_space.n

model = DQN(input_dim, output_dim)

target_model = DQN(input_dim, output_dim)

target_model.load_state_dict(model.state_dict)

target_model.eval

optimizer = optim.Adam(model.parameters, lr=lr)

criterion = nn.MSELoss

# Обучение

for episode in range(num_episodes):

state = env.reset

total_reward = 0

done = False

while not done:

action = select_action(torch.tensor(state).float, epsilon)

next_state, reward, done, _ = env.step(action)

memory.append((state, action, reward, next_state, done))

state = next_state

total_reward += reward

if len(memory) >= batch_size:

batch = random.sample(memory, batch_size)

states, actions, rewards, next_states, dones = zip(*batch)

states = torch.tensor(states).float

actions = torch.tensor(actions)

rewards = torch.tensor(rewards).float

next_states = torch.tensor(next_states).float

dones = torch.tensor(dones)

Q_targets = rewards + gamma * torch.max(target_model(next_states), dim=1)[0] * (1 – dones)

Q_preds = model(states).gather(1, actions.unsqueeze(1))

loss = criterion(Q_preds, Q_targets.unsqueeze(1))

optimizer.zero_grad

loss.backward

optimizer.step

if epsilon > epsilon_min:

epsilon *= epsilon_decay

if episode % target_update == 0:

target_model.load_state_dict(model.state_dict)

print(f"Episode {episode}, Total Reward: {total_reward}")

#

Сохранение обученной модели

torch.save(model.state_dict, 'pong_dqn_model.pth')

```

Представленный код решает задачу обучения агента в среде Atari "Pong" с использованием алгоритма Deep Q-Networks (DQN) и библиотеки PyTorch. В этой задаче агент должен научиться играть в пинг-понг с оптимальной стратегией, минимизируя количество пропущенных мячей и максимизируя количество выигранных очков. Для этого агенту необходимо выбирать оптимальные действия в зависимости от текущего состояния среды.

Основная идея алгоритма DQN заключается в использовании глубокой нейронной сети для аппроксимации функции Q, которая оценивает значение каждого действия в данном состоянии. Агент использует эпсилон-жадную стратегию для выбора действий, что позволяет ему исследовать среду и принимать оптимальные решения в процессе обучения.

В процессе обучения агент накапливает опыт в памяти в виде последовательностей состояние-действие-награда-следующее состояние. Затем из этой памяти случайным образом выбираются мини-батчи, на основе которых обновляются параметры нейронной сети с использованием функции потерь и оптимизатора Adam. При этом целью агента является максимизация суммарной награды, которую он получает в результате взаимодействия со средой.

После обучения обученная модель сохраняется для дальнейшего использования, что позволяет использовать ее для принятия решений в реальном времени без необходимости повторного обучения. Таким образом, данный подход позволяет агенту обучаться в условиях среды Atari "Pong"

и достигать высокой производительности в этой задаче игрового обучения с подкреплением.

5. Задачи обнаружения аномалий

Задачи обнаружения аномалий направлены на поиск аномальных или необычных объектов в наборе данных, которые существенно отличаются от остальных. Некоторые методы решения задач обнаружения аномалий включают в себя:

– Методы на основе статистических показателей (например, Z-оценка)

– Методы на основе машинного обучения (например, метод опорных векторов, методы кластеризации)

Задачи обнаружения аномалий имеют важное значение в различных областях, таких как финансы, кибербезопасность, здравоохранение и производство, где выявление необычных событий или объектов может быть ключевым для предотвращения проблем или обеспечения безопасности системы. Методы обнаружения аномалий направлены на поиск аномальных точек данных, которые не соответствуют обычному поведению или стандартам.

Методы на основе статистических показателей, такие как Z-оценка, представляют собой простой и интуитивно понятный подход к обнаружению аномалий. Основная идея заключается в том, чтобы вычислить стандартное отклонение от среднего значения для каждого признака в наборе данных. Затем для каждой точки данных вычисляется Z-оценка, которая показывает, насколько далеко данная точка отклоняется от среднего значения в единицах стандартного отклонения. Если значение Z-оценки превышает определенный порог, то точка классифицируется как аномалия.

Например, если у нас есть набор данных о температуре в разные дни года, мы можем вычислить среднюю температуру и стандартное отклонение. Затем мы можем вычислить Z-оценку для каждого дня и определить, является ли температура в этот день аномальной, основываясь на пороговом значении Z-оценки.

Этот метод прост в реализации и может быть эффективным для обнаружения явных аномалий в данных, таких как выбросы. Однако он может быть менее эффективным в обнаружении более сложных или скрытых аномалий, таких как аномальные временные или пространственные шаблоны. Кроме того, выбор подходящего порога Z-оценки может быть сложной задачей и требует тщательного анализа данных и экспериментов.

Пример

Давайте рассмотрим пример использования Z-оценки для обнаружения аномалий в наборе данных о росте людей. Предположим, у нас есть данные о росте людей в определенной популяции, и мы хотим выявить аномальные значения роста.

1. Подготовка данных: Первым шагом является загрузка и предварительная обработка данных. Мы вычисляем среднее значение и стандартное отклонение роста в нашем наборе данных.

2. Вычисление Z-оценки: Для каждого индивидуального значения роста мы вычисляем Z-оценку, используя формулу Z = (X – ?) / ?, где X – это значение роста, ? – среднее значение роста, а ? – стандартное отклонение роста.

Поделиться:
Популярные книги

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

Имя нам Легион. Том 1

Дорничев Дмитрий
1. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 1

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Повелитель механического легиона. Том I

Лисицин Евгений
1. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том I

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств