Искусственный интеллект. Машинное обучение
Шрифт:
Пример 1
Давайте рассмотрим пример использования иерархической кластеризации на наборе данных о потреблении энергии в различных странах. Допустим, у нас есть данные о потреблении энергии по разным источникам в нескольких странах. Наша задача – провести кластеризацию этих стран на группы с похожими паттернами потребления энергии.
1. Подготовка данных: Загрузим данные о потреблении энергии в разных странах.
2. Иерархическая кластеризация: Применим метод иерархической кластеризации
3. Визуализация дендрограммы: Построим дендрограмму, чтобы визуально оценить иерархию кластеров и выбрать оптимальное число кластеров для нашего анализа.
4. Анализ результатов: Проанализируем полученные кластеры и сделаем выводы о схожести или различии паттернов потребления энергии в различных странах.
Давайте начнем с загрузки данных и применим метод иерархической кластеризации.
```python
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
# Загрузка данных
data = pd.read_csv('energy_consumption.csv')
# Подготовка данных
X = data.drop('Country', axis=1) # Отделяем признаки от меток классов
scaler = StandardScaler
X_scaled = scaler.fit_transform(X) # Масштабируем данные
# Иерархическая кластеризация
model = AgglomerativeClustering(n_clusters=3) # Задаем количество кластеров
clusters = model.fit_predict(X_scaled)
# Визуализация дендрограммы
plt.figure(figsize=(12, 8))
dendrogram(linkage(X_scaled, method='ward'))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Sample Index')
plt.ylabel('Distance')
plt.show
# Анализ результатов
data['Cluster'] = clusters
cluster_summary = data.groupby('Cluster').mean
print(cluster_summary)
```
Это пример кода для проведения иерархической кластеризации на наборе данных о потреблении энергии в разных странах. В результате мы получаем кластеры стран с похожими паттернами потребления энергии и можем проанализировать эти кластеры для выявления интересных закономерностей.
Для выполнения примера нам нужен набор данных о потреблении энергии в различных странах. Давайте используем набор данных "World Energy Consumption" из открытых источников.
Вы можете найти набор данных о потреблении энергии в различных странах на различных открытых платформах для обмена данными, таких как Kaggle, UCI Machine Learning Repository, или просто выполнить поиск в интернете по запросу "world energy consumption dataset".
После того, как вы загрузите набор данных, вы можете использовать его в коде, приведенном выше, для проведения кластерного анализа.
Метод DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
Это
Шаги алгоритма DBSCAN включают определение двух основных параметров: радиус эпсилон (eps) и минимальное количество объектов в окрестности (min_samples). Затем алгоритм приступает к маркировке ядерных объектов, которые попадают в окрестность других ядерных объектов. После этого кластеры формируются путем объединения ядерных объектов и их ближайших соседей.
Преимущества DBSCAN включают то, что для его работы не требуется знание количества кластеров заранее, а также способность обрабатывать выбросы. Кроме того, он хорошо работает с кластерами различной формы и размера. Однако для эффективной работы DBSCAN требуется правильная настройка параметров эпсилон и минимального количества объектов. Также стоит отметить, что DBSCAN не всегда может эффективно обрабатывать кластеры различной плотности.
Пример 1
Для другого примера кластеризации методом DBSCAN мы можем использовать набор данных с информацией о покупках клиентов. Наша цель – выявить естественные группы потребителей с похожими покупательскими предпочтениями.
```python
import pandas as pd
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
# Загрузка данных
data = pd.read_csv('shopping_data.csv')
# Предварительная обработка данных
X = data.iloc[:, [3, 4]].values
scaler = StandardScaler
X_scaled = scaler.fit_transform(X)
# Инициализация и обучение модели DBSCAN
dbscan = DBSCAN(eps=0.3, min_samples=5)
clusters = dbscan.fit_predict(X_scaled)
# Визуализация результатов
plt.scatter(X_scaled[:,0], X_scaled[:,1], c=clusters, cmap='viridis')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.title('DBSCAN Clustering of Shopping Data')
plt.show
```
В этом примере мы загружаем данные о покупках клиентов, извлекаем признаки, такие как годовой доход и показатель расходов. Затем мы масштабируем данные с помощью стандартного масштабирования, чтобы уравновесить их значения. После этого мы инициализируем и обучаем модель DBSCAN с определенными параметрами, такими как радиус эпсилон (eps) и минимальное количество объектов в окрестности (min_samples). Наконец, мы визуализируем результаты, отображая точки в пространстве признаков с помощью цветов для каждого кластера, выделенного DBSCAN.