Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Этот метод широко применяется в различных областях, включая финансовые рынки, где прогнозирование цен акций и других финансовых показателей является ключевой задачей. Он также находит применение в медицине, где может использоваться для анализа медицинских данных и прогнозирования заболеваний. В области интернет-бизнеса градиентный бустинг используется для прогнозирования пользовательского поведения, персонализации рекомендаций и многих других задач. Его эффективность и универсальность делают его одним из наиболее востребованных методов в машинном обучении.

Пример 1

Допустим,

у нас есть набор данных о клиентах банка, в котором содержится информация о различных признаках клиентов, таких как возраст, доход, семейное положение, кредитная история и т. д. Наша задача состоит в том, чтобы предсказать, будет ли клиент брать кредит (целевая переменная: "берет кредит" или "не берет кредит") на основе этих признаков.

Мы можем применить градиентный бустинг для решения этой задачи. Сначала мы подготовим наши данные, разделив их на обучающий и тестовый наборы. Затем мы создадим модель градиентного бустинга, указав параметры модели, такие как количество деревьев и скорость обучения. После этого мы обучим модель на обучающем наборе данных.

Когда модель обучена, мы можем использовать ее для предсказания на тестовом наборе данных. Мы получим предсказанные значения для каждого клиента и сравним их с фактическими значениями (берет кредит или не берет кредит). Мы можем оценить производительность модели, используя метрики, такие как точность (accuracy), полнота (recall), F1-мера и т. д.

Пример кода:

```# Импорт необходимых библиотек

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import accuracy_score

# Загрузка данных

data = pd.read_csv("bank_data.csv") # Предположим, что у вас есть файл bank_data.csv с данными

X = data.drop("Credit_Taken", axis=1) # Признаки

y = data["Credit_Taken"] # Целевая переменная

# Разделение данных на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Создание и обучение модели градиентного бустинга

model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)

model.fit(X_train, y_train)

# Предсказание на тестовом наборе данных

y_pred = model.predict(X_test)

# Оценка производительности модели

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

В этом коде мы сначала загружаем данные из файла bank_data.csv, затем разделяем их на обучающий и тестовый наборы. Затем мы создаем модель градиентного бустинга с помощью GradientBoostingClassifier и обучаем ее на обучающем наборе данных. После обучения модели мы используем ее для предсказания на тестовом наборе данных и оцениваем производительность модели с помощью метрики accuracy_score.

Это пример того, как можно использовать градиентный бустинг для решения задачи классификации

клиентов банка по их способности брать кредит.

3. Задачи кластеризации

Задачи кластеризации направлены на разделение набора данных на группы или кластеры таким образом, чтобы объекты внутри одного кластера были более похожи друг на друга, чем на объекты из других кластеров. Некоторые методы решения задач кластеризации включают в себя:

– Метод k средних (k-Means)

– Иерархическая кластеризация

– DBSCAN

Рассмотрим их подробнее.

Метод k-Means (k-средних) – это один из наиболее распространенных методов кластеризации. Он основан на простой идее разделения набора данных на k кластеров, где каждый кластер представляет собой группу объектов, близких по среднему расстоянию до центроидов кластеров. Алгоритм k-Means состоит из нескольких шагов. Сначала случайным образом выбираются k центроидов. Затем каждый объект присваивается ближайшему центроиду, после чего центроиды перемещаются в центры объектов, принадлежащих кластерам. Этот процесс повторяется до тех пор, пока центроиды и кластеры не стабилизируются или не будет достигнуто максимальное количество итераций.

Преимущества метода k-Means включают его простоту реализации, эффективность на больших объемах данных и масштабируемость. Однако у метода также есть недостатки. В частности, требуется заранее знать количество кластеров, а также алгоритм чувствителен к начальному расположению центроидов и неустойчив к выбросам.

Метод k-Means является широко используемым инструментом для кластеризации данных благодаря своей простоте и эффективности, но при его использовании следует учитывать его ограничения и подходить к выбору количества кластеров с осторожностью.

Пример 1

Для этого примера давайте использовать набор данных Iris, который содержит информацию о различных видах ирисов. Наша задача будет состоять в кластеризации этих ирисов на основе их характеристик.

Описание задачи:

Набор данных Iris содержит четыре признака: длину и ширину чашелистиков и лепестков ирисов. Мы будем использовать эти признаки для кластеризации ирисов на несколько групп.

Описание хода решения:

1. Загрузка данных: Мы загрузим данные и посмотрим на них, чтобы понять их структуру.

2. Предварительная обработка данных: Если потребуется, мы выполним предварительную обработку данных, такую как масштабирование функций.

3. Кластеризация: Мы применим выбранный метод кластеризации (например, k-средних или иерархическую кластеризацию) к данным.

4. Визуализация результатов: Для лучшего понимания кластеризации мы визуализируем результаты, используя графики.

Давайте перейдем к коду.

Для начала нам нужно загрузить набор данных Iris. Мы будем использовать библиотеку `scikit-learn`, которая предоставляет доступ к этому набору данных. Загрузим данные и посмотрим на них.

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Колючка для высшего эльфа или сиротка в академии

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Колючка для высшего эльфа или сиротка в академии

Адский пекарь

Дрейк Сириус
1. Дорогой пекарь!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Адский пекарь

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2