Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Выбор между методом наименьших квадратов и методом градиентного спуска зависит от конкретной задачи, сложности модели и объема данных. Для простых моделей и небольших наборов данных метод наименьших квадратов может быть предпочтительным из-за своей простоты и аналитического решения. Однако для сложных моделей и больших объемов данных градиентный спуск представляет собой более эффективный подход, позволяющий обучить модель даже при наличии ограниченных ресурсов.

Применение линейной регрессии распространено во многих областях

из-за ее простоты и хорошей интерпретируемости результатов. В экономике и финансах она используется для анализа факторов, влияющих на финансовые показатели. В медицине она помогает предсказывать заболевания или оценивать воздействие лечения. В исследованиях социальных наук она используется для анализа влияния различных факторов на социальные явления.

Пример 1

Рассмотрим пример задачи прогнозирования цен на недвижимость с использованием линейной регрессии и метода градиентного спуска.

Описание задачи:

Представим, что у нас есть набор данных, содержащий информацию о различных характеристиках недвижимости (площадь, количество комнат, удаленность от центра и т. д.), а также цена, по которой эта недвижимость была продана. Наша задача – научиться предсказывать цену новых объектов недвижимости на основе их характеристик.

Ход решения:

1. Подготовка данных: Загрузим и предобработаем данные, разделим их на обучающий и тестовый наборы.

2. Выбор модели: Используем линейную регрессию в качестве базовой модели для прогнозирования цен на недвижимость.

3. Обучение модели: Применим метод градиентного спуска для обучения модели линейной регрессии. Мы будем минимизировать среднеквадратичную ошибку (MSE) между фактическими и предсказанными значениями цен.

4. Оценка модели: Оценим качество модели на тестовом наборе данных с помощью различных метрик, таких как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и коэффициент детерминации (R^2).

Пример кода:

```python

# Шаг 1: Подготовка данных

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

# Загрузка данных

data = pd.read_csv('real_estate_data.csv')

# Предобработка данных

X = data.drop(columns=['price'])

y = data['price']

# Разделение на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Масштабирование признаков

scaler = StandardScaler

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Шаг 2 и 3: Выбор и обучение модели

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

# Создание и обучение модели линейной регрессии

model = LinearRegression

model.fit(X_train_scaled, y_train)

#

Оценка качества модели на тестовом наборе данных

y_pred = model.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)

mae = mean_absolute_error(y_test, y_pred)

r2 = model.score(X_test_scaled, y_test)

print("Mean Squared Error:", mse)

print("Mean Absolute Error:", mae)

print("R^2 Score:", r2)

```

Это простой пример решения задачи прогнозирования цен на недвижимость с использованием линейной регрессии и метода градиентного спуска. После выполнения этого кода вы получите оценки качества модели, которые помогут вам понять, насколько хорошо модель работает на новых данных.

Пример 2

Давайте рассмотрим пример прогнозирования цен на недвижимость с использованием метода наименьших квадратов (OLS) в линейной регрессии.

Описание задачи:

Предположим, у нас есть набор данных о недвижимости, включающий информацию о размере дома, количестве спален, расстоянии до ближайшего общественного транспорта и другие характеристики. Наша задача – предсказать цены на недвижимость на основе этих характеристик.

Ход решения:

1. Подготовка данных: Загрузим и предобработаем данные, например, удалим пропущенные значения и масштабируем признаки при необходимости.

2. Выбор модели: В данном случае мы выберем модель линейной регрессии, и для обучения этой модели будем использовать метод наименьших квадратов.

3. Обучение модели: Обучим модель на обучающем наборе данных.

4. Оценка модели: Оценим качество модели на тестовом наборе данных с использованием метрик качества, таких как средняя абсолютная ошибка (MAE) и коэффициент детерминации (R^2).

Пример кода:

```python

# Шаг 1: Подготовка данных (аналогично предыдущему примеру)

# Шаг 2 и 3: Выбор и обучение модели

from sklearn.linear_model import LinearRegression

# Создание и обучение модели линейной регрессии с использованием метода наименьших квадратов

ols_model = LinearRegression

ols_model.fit(X_train_scaled, y_train)

# Шаг 4: Оценка модели

y_pred_ols = ols_model.predict(X_test_scaled)

mse_ols = mean_squared_error(y_test, y_pred_ols)

mae_ols = mean_absolute_error(y_test, y_pred_ols)

r2_ols = ols_model.score(X_test_scaled, y_test)

print("OLS Mean Squared Error:", mse_ols)

print("OLS Mean Absolute Error:", mae_ols)

print("OLS R^2 Score:", r2_ols)

```

В этом примере мы использовали метод наименьших квадратов в линейной регрессии для прогнозирования цен на недвижимость. Результаты оценки качества модели помогут нам оценить ее эффективность и адекватность для предсказания целевой переменной.

Поделиться:
Популярные книги

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4