Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Для смягчения проблемы переобучения и улучшения обобщающей способности деревьев решений используются ансамблированные методы, такие как случайный лес и градиентный бустинг. Случайный лес объединяет несколько деревьев решений и усредняет их предсказания, что позволяет получить более стабильные результаты. С другой стороны, градиентный бустинг обучает последовательность деревьев, каждое из которых исправляет ошибки предыдущего, что приводит к улучшению качества модели. Эти методы имеют большую обобщающую способность и стабильность по сравнению с отдельными деревьями решений, но их сложнее

интерпретировать из-за их составной структуры и взаимосвязей между отдельными моделями.

Пример 1

Задача:

Представим, что у нас есть набор данных, содержащий информацию о клиентах банка, включая их возраст, доход, семейное положение и другие характеристики. Наша задача состоит в том, чтобы на основе этих данных предсказать, совершит ли клиент депозит в банке или нет.

Ход решения:

1. Загрузка данных: Сначала мы загрузим данные о клиентах банка, чтобы начать анализ.

2. Предварительный анализ данных: Проведем предварительный анализ данных, чтобы понять структуру набора данных, распределение признаков и наличие пропущенных значений.

3. Подготовка данных: Выполним предварительную обработку данных, такую как кодирование категориальных признаков, заполнение пропущенных значений и масштабирование признаков.

4. Разделение данных: Разделим данные на обучающий и тестовый наборы. Обучающий набор будет использоваться для обучения модели, а тестовый – для ее оценки.

5. Обучение модели: Обучим модель на обучающем наборе данных, используя метод SVM.

6. Оценка модели: Оценим качество модели на тестовом наборе данных, используя метрики, такие как точность, полнота и F1-мера.

Пример кода:

```python

# Импорт библиотек

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

from sklearn.datasets import load_bank_dataset

# Загрузка данных о клиентах банка

data = load_bank_dataset

X = data.drop(columns=['deposit'])

y = data['deposit']

# Предварительный анализ данных

print(X.head)

print(X.info)

# Подготовка данных

X = pd.get_dummies(X)

X.fillna(X.mean, inplace=True)

scaler = StandardScaler

X_scaled = scaler.fit_transform(X)

# Разделение данных на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# Обучение модели SVM

svm_classifier = SVC(kernel='rbf', random_state=42)

svm_classifier.fit(X_train, y_train)

# Оценка модели

y_pred = svm_classifier.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

print(classification_report(y_test, y_pred))

```

Это пример кода, который загружает данные о клиентах банка, обрабатывает их, разделяет на обучающий и тестовый наборы, обучает модель SVM и оценивает ее производительность на тестовом наборе данных.

2.

Задачи регрессии

Задачи регрессии направлены на прогнозирование непрерывных значений целевой переменной на основе входных данных. Некоторые популярные методы решения задач регрессии включают в себя:

– Линейная регрессия

– Регрессия на основе деревьев (например, случайный лес)

– Градиентный бустинг

Рассмотрим их подробнее.

Линейная регрессия

Линейная регрессия – это классический метод в машинном обучении, который применяется для анализа и предсказания взаимосвязи между одной или несколькими независимыми переменными и зависимой переменной. Одним из ключевых предположений линейной регрессии является линейная зависимость между признаками и целевой переменной. Цель состоит в том, чтобы найти оптимальные параметры модели (коэффициенты), которые минимизируют сумму квадратов разностей между фактическими значениями зависимой переменной и предсказанными значениями, полученными с использованием линейной функции.

Преимущества линейной регрессии заключаются в ее простоте и интерпретируемости. Этот метод хорошо подходит для понимания влияния каждого признака на целевую переменную и выявления силы и направления этих взаимосвязей. Однако линейная регрессия также имеет свои ограничения, например, она предполагает линейность и постоянство отношений между переменными, что может быть неприменимо в случае сложных нелинейных зависимостей.

Выбор функции потерь и метода оптимизации в линейной регрессии играет важную роль в успешном построении модели. Функция потерь определяет, как будут оцениваться различия между фактическими и предсказанными значениями. Одной из наиболее распространенных функций потерь является среднеквадратичная ошибка (Mean Squared Error, MSE), которая минимизирует сумму квадратов разностей между фактическими и предсказанными значениями. Другие функции потерь также могут использоваться в зависимости от конкретной задачи, например, абсолютное отклонение (Mean Absolute Error, MAE) или квантильная регрессия.

Метод наименьших квадратов (OLS) – это классический метод оптимизации, применяемый в линейной регрессии. Он ищет оптимальные значения параметров модели, минимизируя сумму квадратов разностей между фактическими и предсказанными значениями целевой переменной. Однако OLS имеет аналитическое решение только для простых линейных моделей. При использовании сложных моделей или больших объемов данных метод наименьших квадратов может столкнуться с проблемами вычислительной сложности или переобучения.

Метод градиентного спуска – это итерационный метод оптимизации, который эффективно применяется в случае сложных моделей и больших объемов данных. Он основан на идее минимизации функции потерь, используя градиент функции потерь по отношению к параметрам модели. Градиентный спуск обновляет параметры модели на каждой итерации, двигаясь в направлении, противоположном градиенту функции потерь, с тем чтобы достичь минимума. Этот процесс повторяется до тех пор, пока не будет достигнуто удовлетворительное значение функции потерь или пока не будут выполнены другие критерии останова.

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Колючка для высшего эльфа или сиротка в академии

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Колючка для высшего эльфа или сиротка в академии

Адский пекарь

Дрейк Сириус
1. Дорогой пекарь!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Адский пекарь

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2