Искусство мыслить рационально. Шорткаты в математике и в жизни
Шрифт:
После первых школьных достижений в девятилетнем возрасте Гаусс продолжил совершать интереснейшие математические открытия, в том числе изобрел способ построения правильного семнадцатиугольника при помощи только линейки и циркуля. Эта задача оставалась нерешенной в течение 2000 лет, с тех самых пор, как древние греки начали придумывать хитроумные способы построения геометрических фигур. Гаусс был так горд этим свершением, что начал вести математический дневник, в который заносил в последующие годы свои поразительные открытия в области чисел и геометрии. Но особенно его заинтересовали данные новой планеты. Можно ли найти в величинах, измеренных до исчезновения Цереры за Солнцем,
Разумеется, в его великом астрономическом свершении не было никакого волшебства. Одна лишь математика. Астрономы открыли Цереру по случайности. Применив средства математического анализа, Гаусс выявил паттерн, скрывавшийся за числами, которые описывали положение этого астероида, и узнал, где он должен оказаться в будущем. Конечно, паттерны динамики космических тел замечали и до него. Астрономы использовали этот шорткат к ориентации в ночном небе для составления предсказаний и планирования будущего с тех самых пор, как род человеческий понял, что между будущим и прошлым существует связь.
Благодаря паттерну смены времен года крестьяне могли планировать сев. Каждое время года соответствовало особому расположению звезд. Паттерны поведения – миграции и спаривания – животных позволяли древнему человеку охотиться в наиболее удобные для этого моменты, когда можно получить максимальную добычу с минимальной затратой сил. Способность предсказывать затмения делала предсказателя важным членом племени. Хорошо известно, что в 1503 году, когда суда Христофора Колумба сели на мель на Ямайке, он спас свой экипаж, попавший в плен к местным жителям, воспользовавшись своими знаниями о надвигавшемся лунном затмении. Туземцев так поразила его способность предсказывать исчезновение Луны, что они согласились отпустить пленников на свободу.
Назовите следующее число
Суть поиска паттернов идеально выражают задачи, которые вам, вероятно, приходилось решать в школе: вам дают последовательность чисел и просят определить следующее число в этой последовательности. Я очень любил такие задачи, которые наш учитель выписывал мелом на доске. Чем больше времени уходило у меня на поиски паттерна, тем более ценным казался найденный в конце концов шорткат. Этот урок я усвоил довольно рано. Обнаружение самых лучших шорткатов часто занимает много времени. Оно требует усилий. Но стоит найти такой шорткат, и он становится частью вашего инструментария познания мира и вы можете использовать его снова и снова.
Вот несколько заданий, которые помогут активировать ваши нейроны, занимающиеся поиском шорткатов, основанных на паттернах. Каким будет следующее число в этой последовательности?
1, 3, 6, 10, 15, 21 …
Не слишком сложная задача. Вы, вероятно, заметили, что на каждом шаге всего лишь прибавляется следующее по порядку число. Следующее число равно 21 + 7, то есть 28. Эти числа называются треугольными, потому что они соответствуют количеству камешков, которые нужны для построения треугольника: на каждом шаге к треугольнику добавляется еще один ряд камешков. Но существует ли шорткат, позволяющий найти сотое число, не перебирая все предыдущие 99? Собственно говоря, это именно та задача, которую пришлось решить Гауссу, когда учитель задал ему сложить все числа от 1 до 100. Гаусс нашел хитроумный шорткат и вычислил ответ, складывая числа попарно. В более общем случае, если вам нужно найти n– е треугольное число, прием Гаусса выражается следующей формулой:
1/2 x n x (n + 1).
Эти
num = + + .
Гаусс открыл следующий весьма замечательный факт: любое число может быть записано в виде суммы не более трех треугольных чисел. Например, 1796 = 10 + 561 + 1225. Наблюдения такого рода могут порождать очень полезные шорткаты: вместо того чтобы доказывать, что некоторое утверждение справедливо для всех чисел, может быть достаточно доказать его для треугольных чисел, а затем использовать открытое Гауссом правило, что любое число есть сумма трех треугольных чисел.
Вот еще одна задача. Назовите следующее число в последовательности:
1, 2, 4, 8, 16 …
Тоже ничего сложного. Следующее число – 32. На каждом шаге члены этой последовательности удваиваются. Эта зависимость, которую называют экспоненциальным ростом, управляет ростом многих величин; поэтому важно понимать, как работают такого рода паттерны. К примеру, поначалу последовательность выглядит вполне невинно. Именно так, видимо, считал индийский царь, согласившийся заплатить создателю шахмат ту цену, которую тот просил за свою игру. Изобретатель попросил положить на первую клетку шахматной доски одно рисовое зерно, а затем удваивать число рисинок на каждой следующей клетке. Первый ряд клеток выглядел вполне безобидно. На нем оказалось всего лишь 1 + 2 + + 4 + 8 + 16 + 32 + 64 + 128 = 255 зерен риса. Этого едва хватило бы и на одно суши.
Но слуги царя добавляли на доску все больше и больше риса, и вскоре их запасы иссякли. Чтобы заполнить половину клеток, понадобилось около 280 000 килограммов риса. И это была легкая половина доски. Сколько же зерен риса царь должен был отдать изобретателю? Этот вопрос похож на одну из задач, которые мог задавать своим бедным ученикам герр Бюттнер. Есть трудный способ решить ее: нужно сложить все 64 разных числа. Кто же захочет заниматься такой тяжелой работой? И как подошел бы к такому заданию Гаусс?
Для этого вычисления существует очень красивый шорткат, но на первый взгляд может показаться, что он только усложняет задачу. Вначале часто кажется, что шорткат ведет не к цели, а в прямо противоположном направлении. Прежде всего я дам суммарному числу зерен риса имя: я назову его Х. Это одно из самых популярных имен в математике; как я покажу в главе 3, оно и само по себе является могущественным шорткатом из арсенала математика.
Для начала я удвою то число, которое пытаюсь вычислить:
2 x (1 + 2 + 4 + 8 + 16 +… + 262 + 263).
Казалось бы, это только осложняет мне жизнь. Но посмотрите, что я сделаю дальше. Раскроем скобки:
= 2 + 4 + 8 + 16 + 32 +… + 263 + 264.
Теперь применим одну хитрость. Я собираюсь вычесть из этого выражения Х. На первый взгляд кажется, что тогда мы вернемся туда же, откуда начали: 2Х – Х = Х. Какой в этом толк? Чудо происходит тогда, когда я заменяю 2Х и Х на суммы, которые я выписал выше: