Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Помня об этом замечательном свойстве при анализе схем, содержащих резисторы, конденсаторы и индуктивности, вы всегда должны ответить на вопрос: как зависит выходное напряжение (его амплитуда и фаза) от входного напряжения в виде синусоидального сигнала определенной частоты. Этот вопрос важен и тогда, когда схема предназначена для другого режима работы. График результирующей амплитудно-частотной характеристики, отражающей отношение выходного сигнала к входному для каждого значения частоты синусоиды, полезен при анализе работы схемы со многими видами сигналов. Амплитудно-частотная характеристика (АЧХ), представленная на рис. 1.46, может принадлежать, например,
Рис. 1.46. Пример частотного анализа: выравнивание для громкоговорителя.
Под выходным сигналом в данном случае понимается звуковое давление, а не напряжение. Желательно, чтобы АЧХ репродуктора была «плоской», т. е. чтобы отношение звукового давления к частоте было постоянной величиной в диапазоне звуковых частот. В этом случае недостатки репродуктора можно скомпенсировать за счет пассивного фильтра с инверсной АЧХ (как показано на графике), включенного в усилитель радиоприемника.
Как мы увидим в дальнейшем, можно обобщить закон Ома, заменив понятие «сопротивление» понятием «полное сопротивление», или «импеданс», тогда он будет справедлив для любой схемы, в состав которой входят линейные пассивные элементы (резисторы, конденсаторы, индуктивности). Итак, понятия «импеданс» и «реактивное сопротивление» делают закон Ома справедливым для схем, содержащих конденсаторы и индуктивности. Уточним терминологию.
Импеданс — это обобщенное или полное сопротивление, индуктивности и конденсаторы обладают реактивным сопротивлением (можно сказать, что они реагируют на воздействие); резисторы обладают сопротивлением (по аналогии они оказывают сопротивление воздействию). Иными словами, импеданс = сопротивление + реактивное сопротивление (более подробно поговорим об этом позже).
Однако можно встретить, например, такое выражение: «импеданс конденсатора на данной частоте составляет…». Дело в том, что в импеданс входит реактивное сопротивление, и поэтому не обязательно говорить «реактивное сопротивление конденсатора», можно сказать и «импеданс конденсатора». На самом деле слово «импеданс» часто употребляют и тогда, когда известно, что речь идет о сопротивлении; например, говорят «импеданс источника» или «выходной импеданс», имея в виду эквивалентное сопротивление некоторого источника. То же самое относится и к «входному импедансу».
В дальнейшем речь пойдет о схемах, для питания которых используется синусоидальный сигнал с определенной частотой. Анализ схем, работающих с сигналами другой формы, требует большей тщательности и предполагает использование уже известных нам методов (например, метода дифференциальных уравнений или метода преобразования Фурье, при котором сигнал представляют в виде ряда синусоид). На практике эти методы редко используются.
1.18. Частотный анализ реактивных схем
Для начала рассмотрим конденсатор, на который подается синусоидальное напряжение источника питания (рис. 1.47).
Рис. 1.47.
Ток в схеме определяется следующим образом:
I(t) = C(dU/dt) = C··U0·cos t.
Из этого уравнения следует, что ток имеет амплитуду I и опережает входное напряжение по фазе на 90°. Если не принимать во внимание соотношение фаз, то
I = U/(1/C).
(Напомним, что = 2f). Конденсатор ведет себя как резистор, сопротивление которого зависит от частоты и определяется выражением R = 1/C, и, кроме того, ток, протекающий через конденсатор, сдвинут по фазе на 90° относительно напряжения (рис. 1.48).
Рис. 1.48.
Например, через конденсатор емкостью 1 мкФ, подключенный к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц, будет протекать ток, эффективная амплитуда которого определяется следующим образом: I = 110/[1/(2·60·10– 6)] = 41,5 мА (эффективное значение).
Замечание: сейчас нам необходимо воспользоваться комплексными переменными; при желании вы можете пропустить математические выкладки, приводимые в последующих разделах, и принять на веру полученные результаты (они выделены в тексте). Не думайте, что подробные алгебраические преобразования, приводимые в этих разделах, необходимы для понимания всего остального материала книги. Это не так - глубокое знание математики похвально, но совсем не обязательно. Следующий раздел, пожалуй, наиболее труден для тех, у кого нет достаточной математической подготовки. Но пусть это вас не огорчает.
Определение напряжения и тока с помощью комплексных чисел. Только что вы убедились в том, что в цепи переменного тока, работающей с синусоидальным сигналом некоторой частоты, возможен сдвиг по фазе между напряжением и током. Тем не менее если схема содержит только линейные элементы (резисторы, конденсаторы, индуктивности), то амплитуда токов на всех участках схемы пропорциональна амплитуде питающего напряжения. В связи с этим можно попытаться найти некоторые общие выражения тока, напряжения и сопротивления и обобщить тем самым закон Ома.
Очевидно, что для того, чтобы определить ток в какой-либо точке схемы, недостаточно задать одно значение-дело в том, что ток характеризуется как амплитудой, так и сдвигом фазы.
Конечно, можно определять амплитуды и фазовые сдвиги напряжений и токов явно, например U(t) = 23,7·sin(377·t + 0,38), но оказывается, что проще это делать с помощью комплексных чисел. Вместо того чтобы тратить время и силы на сложение и вычитание синусоидальных функций, можно легко и просто складывать и вычитать комплексные числа. Так как действующие значения напряжения и тока представляют собой реальные количественные величины, изменяющиеся во времени, следует вывести правило для перевода реальных количественных величин в комплексное представление и наоборот. Напомним еще раз, что мы имеем дело с частотой синусоидального колебания , и сформулируем следующие правила: