Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
1. Напряжение и ток представляются комплексными величинами U и I.
Напряжение U0cos(t + ) представляется комплексным числом U0ej. Напомним, что ej = cos + jsin , где j = —1.
2. Для того чтобы получить выражение для действующего напряжения и тока, нужно умножить соответствующие комплексные представления на ejt и
(В электронике символ j используется вместо принятого в алгебре для комплексной переменной символа i, с тем чтобы избежать путаницы с током, который также обозначают символом i). Итак, в общем случае действующие напряжения и токи определяются следующим образом:
U(t) = Re(U·ejt) = Re(U)·cos t — Im(U)·sin t,
(t) = Re(I·ejt) = Re(I)·cos t — Im(I)·sin t,
Например, комплексному напряжению U = 5j соответствует реальное напряжение
U(t) = Re[5j·cos t + 5j(j)·sin t] = 5sin t B
Реактивное сопротивление конденсаторов и индуктивностей. Принятое соглашение позволяет применять закон Ома для схем, содержащих как резисторы, так и конденсаторы, и индуктивности.
Определим реактивное сопротивление конденсатора и индуктивности. Нам известно, U(t) = Re(U0·ejt). Так как в случае конденсатора справедливо выражение I = C(dU/dt), получим
(t) = — U0C·sin t = Re[U0·ejt/(-j/C)] = Re(U0·ejt/XC),
т. е. для конденсатора
XC = — j/C,
ХC — это реактивное сопротивление конденсатора на частоте . Конденсатор емкостью 1 мкФ, например, имеет реактивное сопротивление —2653j Ом на частоте 60 Гц и —0,16j Ом на частоте 1 МГц. Для постоянного тока реактивное сопротивление равно бесконечности. Аналогичные рассуждения для индуктивности дают следующий результат:
XL = jL.
Схема, содержащая только конденсаторы и индуктивности, всегда обладает мнимым импедансом; это значит, что напряжение и ток всегда сдвинуты по фазе друг относительно друга на 90°- схема абсолютно
Обобщенный закон Ома. Соглашения, принятые для представления напряжений и токов, позволяют записать закон Ома в следующей простой форме:
I = U/Z, U = I·Z, означающей, что напряжение U, приложенное к схеме с импедансом Z, порождает ток I. Импеданс последовательно и параллельно соединенных элементов определяется по тем же правилам, что и сопротивление последовательно и параллельно соединенных резисторов:
Z = Z1 + Z2 + Z3 +…
(для последовательного соединения),
И в заключение приведем формулы для определения импеданса резисторов, конденсаторов и индуктивностей:
ZR = R (резистор),
ZC = —j/C (конденсатор),
ZL= jL (индуктивность).
Полученные зависимости позволяют анализировать любые схемы переменного тока с помощью методов, принятых для схем постоянного тока, а именно с помощью закона Ома и формул для последовательного и параллельного соединения элементов. Результаты, которые мы получили при анализе таких схем, как, например, делитель напряжения, сохраняют почти такой же вид. Так же как и для схем постоянного тока, для сложных разветвленных схем переменного тока справедливы законы Кирхгофа; отличие состоит в том, что вместо токов I и напряжений U здесь следует использовать их комплексные представления: сумма падений напряжения (комплексного) в замкнутом контуре равна нулю; сумма токов (комплексных), втекающих в узел, равна сумме токов (комплексных), вытекающих из него. Из последнего правила, как и в случае с цепями постоянного тока, вытекает, что ток (комплексный) в последовательной цепи всюду одинаков.
Упражнение 1.16. Используя формулы для импеданса параллельного и последовательного соединения элементов, выведите формулы (разд. 1.12) для емкости двух конденсаторов, соединенных (а) параллельно, (б) последовательно. Подсказка: допустим, что в каждом случае конденсаторы имеют емкость С1 и С2. Запишите выражение для импеданса параллельно и последовательно соединенных элементов и приравняйте его импедансу конденсатора с емкостью С. Найдите С.
Попробуем воспользоваться рекомендованным методом для анализа простейшей цепи переменного тока, которая состоит из конденсатора, к которому приложено напряжение переменного тока. После этого кратко остановимся на вопросе о мощности в реактивных схемах (это будет последний кирпич в фундаменте наших знаний) и рассмотрим простую, но очень полезную схему RC– фильтра.
Представим себе, что к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц подключен конденсатор емкостью 1 мкФ. Какой ток протекает при этом через конденсатор?