Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Рис. 1.38. Выделение переднего фронта импульса.
Дифференцирующая RC-цепь генерирует импульсы в виде коротких пиков в моменты переключения входного сигнала, а выходной буферный усилитель преобразует эти импульсы в короткие прямоугольные импульсы. В реальных схемах отрицательный пик бывает небольшим благодаря встроенному в буфер диоду (речь об этом элементе пойдет в разд. 1.25).
Паразитная емкостная связь. Иногда схема неожиданно начинает проявлять дифференцирующие свойства, причем в ситуациях, где они совершенно нежелательны. При этом можно наблюдать сигналы, подобные показанным на рис. 1.39.
Рис. 1.39.
Первый
1.15. Интегрирующие цепи
Рассмотрим схему, изображенную на рис. 1.40.
Рис. 1.40.
Напряжение на резисторе R равно Uвх — U, следовательно, I = C(dU/dt) = (Uвх — U)/R. Если обеспечить выполнение условия U << Uвх за счет большого значения произведения RC, то получим C(dU/dt) ~= Uвх/R или
Мы получили, что схема интегрирует входной сигнал во времени! Рассмотрим, каким образом эта схема обеспечивает аппроксимацию интегрирования в случае входного сигнала прямоугольной формы: U(t) представляет собой знакомый уже нам график экспоненциальной зависимости, определяющей заряд конденсатора (рис. 1.41).
Рис. 1.41.
Первый участок экспоненты (интеграл от почти постоянной величины) — прямая с постоянным углом наклона; при увеличении постоянной времени RC используется все меньший участок экспоненты, тем самым обеспечивается лучшая аппроксимация идеального пилообразного сигнала.
Отметим, что условие U << Uвх равносильно тому, что ток пропорционален напряжению Uвх. Если бы в качестве входного сигнала выступал ток I(t), а не напряжение, то мы получили бы идеальный интегратор. Источником тока может служить резистор с большим сопротивлением и с большим падением напряжения на нем, и на практике часто пользуются этим приближением.
В дальнейшем, когда мы познакомим вас с операционными усилителями и обратной связью, вы узнаете, как построить интегратор, не прибегая к условию Uвых << Uвх. Такой интегратор работает в широком диапазоне частот и напряжений с пренебрежимо малой ошибкой.
Интегрирующие цепи находят широкое применение в аналоговой технике. Их используют в управляющих системах, схемах с обратной связью, при аналого-цифровом преобразовании и генерации колебаний.
Генераторы пилообразного сигнала. Теперь вы без труда разберетесь в том, как работает генератор пилообразного сигнала. Эта схема хорошо зарекомендовала себя и нашла очень широкое применение: ее используют во время-задающих схемах, в генераторах синусоидальных и других типов колебаний, в схемах развертки осциллографов, в аналого-цифровых преобразователях. Схема использует постоянный ток для заряда конденсатора (рис. 1.42).
Рис. 1.42. Источник постоянного тока, заряжающий конденсатор, генерирует напряжение в виде линейно-меняющегося сигнала.
Из уравнения для тока, протекающего через конденсатор, I = C(dU/dt) получим U(t) = (I/C)t. Выходной сигнал изображен на рис. 1.43.
Рис. 1.43.
Линейное нарастание сигнала прекращается тогда, когда «иссякает» напряжение источника тока, т. е. достигается его предельное значение. Кривая для простой RC– цепи с резистором, подключенным к источнику напряжения, ведет себя аналогично случаю достижения предела источником тока. На рис. 1.43 эта вторая кривая показана для случая, когда R выбрано так, чтобы ток при нулевом выходном напряжении был равен току источника тока; при этом вторая кривая стремится к тому же пределу, что и ломаная. (В реальных источниках тока выходное напряжение ограничено напряжением используемых в них источников питания, так что такое поведение вполне правдоподобно.) В следующей главе, посвященной транзисторам, мы построим простые схемы источников тока, а в главах, где рассматриваются операционные усилители и полевые транзисторы, — их усовершенствованные типы.
Вот как много интересных вопросов ожидает нас впереди.
Упражнение 1.15. Ток 1 мА заряжает конденсатор емкостью 1 мкФ. Через какое время напряжение достигнет 10 В?
Индуктивности и трансформаторы
1.16. Индуктивности
Если вы поняли, что такое конденсатор, то вы поймете и что такое индуктивность (рис. 1.44).